
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Advanced Computer Networking (ACN)

Exercise 1 – Solution

Prof. Dr.-Ing. Georg Carle

Sebastian Gallenmüller, Max Helm, Benedikt Jaeger,
Marcel Kempf, Patrick Sattler, Johannes Zirngibl

Chair of Network Architectures and Services
School of Computation, Information, and Technology

Technical University of Munich

Outline

Announcements

Tutorial1 – Problem 0: Getting Access

Tutorial1 – Problem 1: Git Access

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

Tutorial1 – Problem 3: Jupyter Introduction

Tutorial1 – Problem 4: IPv6

Outline 2

Announcements

For questions and problems:

• Always use this mail address: acn@net.in.tum.de

• If you reply to a mail always use Reply All, usually results in a faster response

Tutorial

• Deadline for tutorial1 was 15 minutes ago

• If you haven’t yet, commit and push your solution now

Announcements 3

Tutorial1 – Problem 0: Getting Access

Demo

• Clone repository

• Boot VMs and log in

• Merge remote branch

• Copy repository to VM

• Build SSH tunnel and start Jupyter notebook

• SSH agent

Tutorial1 – Problem 0: Getting Access 4

Tutorial1 – Problem 1: Git Access
1 a)

Explain the differences between the Git commands add, commit, and push.

According to git man:

• git-add (1) Add file contents to the index.

• git-commit (1) Record changes to the repository.

• git-push (1) Update remote refs along with associated

objects.

1 b)

Save your current changes to this Jupyter notebook. Add the file to a
new commit and push to remote, then pull again. Execute the com-
mand git tag and paste the output here. Explain the meaning of the
output.

submission/1476987868

submission/1476989062

Unix timestamp:
1476987868 = Oct 20 2016 18:24:28

https://www.reddit.com/r/git/comments/99ul9f/git_workflow_diagram_showcasing_the_role_of/

Tutorial1 – Problem 1: Git Access 5

Tutorial1 – Problem 1: Git Access
1 a)

Explain the differences between the Git commands add, commit, and push.

According to git man:

• git-add (1) Add file contents to the index.

• git-commit (1) Record changes to the repository.

• git-push (1) Update remote refs along with associated

objects.

1 b)

Save your current changes to this Jupyter notebook. Add the file to a
new commit and push to remote, then pull again. Execute the com-
mand git tag and paste the output here. Explain the meaning of the
output.

submission/1476987868

submission/1476989062

Unix timestamp:
1476987868 = Oct 20 2016 18:24:28

https://www.reddit.com/r/git/comments/99ul9f/git_workflow_diagram_showcasing_the_role_of/

Tutorial1 – Problem 1: Git Access 5

Tutorial1 – Problem 1: Git Access
1 a)

Explain the differences between the Git commands add, commit, and push.

According to git man:

• git-add (1) Add file contents to the index.

• git-commit (1) Record changes to the repository.

• git-push (1) Update remote refs along with associated

objects.

1 b)

Save your current changes to this Jupyter notebook. Add the file to a
new commit and push to remote, then pull again. Execute the com-
mand git tag and paste the output here. Explain the meaning of the
output.

submission/1476987868

submission/1476989062

Unix timestamp:
1476987868 = Oct 20 2016 18:24:28

https://www.reddit.com/r/git/comments/99ul9f/git_workflow_diagram_showcasing_the_role_of/

Tutorial1 – Problem 1: Git Access 5

Tutorial1 – Problem 1: Git Access
1 a)

Explain the differences between the Git commands add, commit, and push.

According to git man:

• git-add (1) Add file contents to the index.

• git-commit (1) Record changes to the repository.

• git-push (1) Update remote refs along with associated

objects.

1 b)

Save your current changes to this Jupyter notebook. Add the file to a
new commit and push to remote, then pull again. Execute the com-
mand git tag and paste the output here. Explain the meaning of the
output.

submission/1476987868

submission/1476989062

Unix timestamp:
1476987868 = Oct 20 2016 18:24:28

https://www.reddit.com/r/git/comments/99ul9f/git_workflow_diagram_showcasing_the_role_of/

Tutorial1 – Problem 1: Git Access 5

Tutorial1 – Problem 1: Git Access

1 c)

Create and push a new branch called grades. Paste the commands used to do so into your answer. Explain what happens.

• Push rule for branch names: ˆmain|grades$ → only main and grades branches can be pushed

• Protected branches: grades → you can only push to main, we can push to grades

Tutorial1 – Problem 1: Git Access 6

Tutorial1 – Problem 1: Git Access

1 c)

Create and push a new branch called grades. Paste the commands used to do so into your answer. Explain what happens.

• Push rule for branch names: ˆmain|grades$ → only main and grades branches can be pushed

• Protected branches: grades → you can only push to main, we can push to grades

Tutorial1 – Problem 1: Git Access 6

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 a)

Explain what SSH is and what it is being used for.

The Secure Shell (SSH) is a protocol for secure remote login

and other secure network services over an insecure network. (RFC 4253)

• SSH = Secure SHell

• It is a protocol running on TCP port 22

• Provides encryption, host-based authentication and integrity protection

• Can be used for remote login and tunneling

2 b)

Explain the difference between public-key and password authentication as offered by SSH.

• Password as shared secret between server and client (symmetric)

• Client uses (secret) private key to authenticate against public key on server

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 7

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 a)

Explain what SSH is and what it is being used for.

The Secure Shell (SSH) is a protocol for secure remote login

and other secure network services over an insecure network. (RFC 4253)

• SSH = Secure SHell

• It is a protocol running on TCP port 22

• Provides encryption, host-based authentication and integrity protection

• Can be used for remote login and tunneling

2 b)

Explain the difference between public-key and password authentication as offered by SSH.

• Password as shared secret between server and client (symmetric)

• Client uses (secret) private key to authenticate against public key on server

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 7

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 a)

Explain what SSH is and what it is being used for.

The Secure Shell (SSH) is a protocol for secure remote login

and other secure network services over an insecure network. (RFC 4253)

• SSH = Secure SHell

• It is a protocol running on TCP port 22

• Provides encryption, host-based authentication and integrity protection

• Can be used for remote login and tunneling

2 b)

Explain the difference between public-key and password authentication as offered by SSH.

• Password as shared secret between server and client (symmetric)

• Client uses (secret) private key to authenticate against public key on server

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 7

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 a)

Explain what SSH is and what it is being used for.

The Secure Shell (SSH) is a protocol for secure remote login

and other secure network services over an insecure network. (RFC 4253)

• SSH = Secure SHell

• It is a protocol running on TCP port 22

• Provides encryption, host-based authentication and integrity protection

• Can be used for remote login and tunneling

2 b)

Explain the difference between public-key and password authentication as offered by SSH.

• Password as shared secret between server and client (symmetric)

• Client uses (secret) private key to authenticate against public key on server

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 7

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 c)

SSH can be used to connect to your personal VM and to clone your personal git repository. You can connect to your personal VM using the
command:

ssh -L localhost:1337:localhost:1337 root@svmNNNN.net.in.tum.de

where NNNN is your UID. Explain in detail what this command does.

The commands enables ssh tunneling from the local addess (IP and port) to the remote addess (IP and port) on the remote host .

2 d)

Connect to your virtual machine using SSH and execute the following three commands: whoami, uname -a, pwd. Paste the output of each of
the three commands into your answer and explain what each command does.

• whoami – display effective user id

• uname – display information about the system

• pwd – return working directory name

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 8

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 c)

SSH can be used to connect to your personal VM and to clone your personal git repository. You can connect to your personal VM using the
command:

ssh -L localhost:1337 : localhost:1337 root@svmNNNN.net.in.tum.de

where NNNN is your UID. Explain in detail what this command does.

The commands enables ssh tunneling from the local addess (IP and port) to the remote addess (IP and port) on the remote host .

2 d)

Connect to your virtual machine using SSH and execute the following three commands: whoami, uname -a, pwd. Paste the output of each of
the three commands into your answer and explain what each command does.

• whoami – display effective user id

• uname – display information about the system

• pwd – return working directory name

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 8

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 c)

SSH can be used to connect to your personal VM and to clone your personal git repository. You can connect to your personal VM using the
command:

ssh -L localhost:1337 : localhost:1337 root@svmNNNN.net.in.tum.de

where NNNN is your UID. Explain in detail what this command does.

The commands enables ssh tunneling from the local addess (IP and port) to the remote addess (IP and port) on the remote host .

2 d)

Connect to your virtual machine using SSH and execute the following three commands: whoami, uname -a, pwd. Paste the output of each of
the three commands into your answer and explain what each command does.

• whoami – display effective user id

• uname – display information about the system

• pwd – return working directory name

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 8

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access

2 c)

SSH can be used to connect to your personal VM and to clone your personal git repository. You can connect to your personal VM using the
command:

ssh -L localhost:1337 : localhost:1337 root@svmNNNN.net.in.tum.de

where NNNN is your UID. Explain in detail what this command does.

The commands enables ssh tunneling from the local addess (IP and port) to the remote addess (IP and port) on the remote host .

2 d)

Connect to your virtual machine using SSH and execute the following three commands: whoami, uname -a, pwd. Paste the output of each of
the three commands into your answer and explain what each command does.

• whoami – display effective user id

• uname – display information about the system

• pwd – return working directory name

Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access 8

Tutorial1 – Problem 3: Jupyter Introduction
3 a)

Jupyter notebooks consist of cells with different types, e. g., code and markdown.
Explain the differences between those two types and what they can be used for.

• A code cell supports the execution of Python code
• Only valid code can be executed
• Code cells also contain an execution number
• The markdown cell supports text with markdown syntax
• If needed HTML code can be used to format the text

Note: we look forward to nicely formatted answers :)

3 b)

Errors should never occur in your handed-in notebook. Fix this code by
defining the hello_world variable, assigning it a value, and returning
it.

� �
1 def hello_world_text () :
2 # begin insert code

3 hello_world = "Hello World!"

4 return hello_world

5 # end insert code

6 return None

7 print (hello_world_text ())
8

9 > Hello World !� �

Tutorial1 – Problem 3: Jupyter Introduction 9

Tutorial1 – Problem 3: Jupyter Introduction
3 a)

Jupyter notebooks consist of cells with different types, e. g., code and markdown.
Explain the differences between those two types and what they can be used for.

• A code cell supports the execution of Python code
• Only valid code can be executed
• Code cells also contain an execution number
• The markdown cell supports text with markdown syntax
• If needed HTML code can be used to format the text

Note: we look forward to nicely formatted answers :)

3 b)

Errors should never occur in your handed-in notebook. Fix this code by
defining the hello_world variable, assigning it a value, and returning
it.

� �
1 def hello_world_text () :
2 # begin insert code

3 hello_world = "Hello World!"

4 return hello_world

5 # end insert code

6 return None

7 print (hello_world_text ())
8

9 > Hello World !� �

Tutorial1 – Problem 3: Jupyter Introduction 9

Tutorial1 – Problem 3: Jupyter Introduction
3 a)

Jupyter notebooks consist of cells with different types, e. g., code and markdown.
Explain the differences between those two types and what they can be used for.

• A code cell supports the execution of Python code
• Only valid code can be executed
• Code cells also contain an execution number
• The markdown cell supports text with markdown syntax
• If needed HTML code can be used to format the text

Note: we look forward to nicely formatted answers :)

3 b)

Errors should never occur in your handed-in notebook. Fix this code by
defining the hello_world variable, assigning it a value, and returning
it.

� �
1 def hello_world_text () :
2 # begin insert code

3 hello_world = "Hello World!"

4 return hello_world

5 # end insert code

6 return None

7 print (hello_world_text ())
8

9 > Hello World !� �

Tutorial1 – Problem 3: Jupyter Introduction 9

Tutorial1 – Problem 3: Jupyter Introduction
3 a)

Jupyter notebooks consist of cells with different types, e. g., code and markdown.
Explain the differences between those two types and what they can be used for.

• A code cell supports the execution of Python code
• Only valid code can be executed
• Code cells also contain an execution number
• The markdown cell supports text with markdown syntax
• If needed HTML code can be used to format the text

Note: we look forward to nicely formatted answers :)

3 b)

Errors should never occur in your handed-in notebook. Fix this code by
defining the hello_world variable, assigning it a value, and returning
it.

� �
1 def hello_world_text () :
2 # begin insert code

3 hello_world = "Hello World!"

4 return hello_world

5 # end insert code

6 return None

7 print (hello_world_text ())
8

9 > Hello World !� �
Tutorial1 – Problem 3: Jupyter Introduction 9

Tutorial1 – Problem 3: Jupyter Introduction

3 d)

Code cells also allow to execute shell commands. These are executed as the user who started the Jupyter server. On your virtual machine
this is root. Shell commands can be executed by prefixing them with the ’!’ character.

� �
1 ! pwd # the path where jupyter has been started

2 ! echo This user is executing the commands : $USER

3 ! ping - c 1 net . in . tum . de
4

5 > / Users / sattler / acn / exercise /2021
6 > This user is executing the commands : sattler

7 > PING net . in . tum . de (131 .159.15 .24) : 56 data bytes

8 > 64 bytes from 131.159.15.24: icmp_seq=0 ttl=63 time=0.561 ms

9

10 > - - - net . in . tum . de ping statistics - - -
11 > 1 packets transmitted , 1 packets received , 0.0% packet loss

12 > round - trip min / avg / max / stddev = 0.561 /0 .561 /0 .561 /0 .000 ms� �
3 e)

In some exercise sheets we will use such shell commands to install missing Python modules.

Tutorial1 – Problem 3: Jupyter Introduction 10

Tutorial1 – Problem 3: Jupyter Introduction

3 d)

Code cells also allow to execute shell commands. These are executed as the user who started the Jupyter server. On your virtual machine
this is root. Shell commands can be executed by prefixing them with the ’!’ character.� �

1 ! pwd # the path where jupyter has been started

2 ! echo This user is executing the commands : $USER

3 ! ping - c 1 net . in . tum . de
4

5 > / Users / sattler / acn / exercise /2021
6 > This user is executing the commands : sattler

7 > PING net . in . tum . de (131 .159.15 .24) : 56 data bytes

8 > 64 bytes from 131.159.15.24: icmp_seq=0 ttl=63 time=0.561 ms

9

10 > - - - net . in . tum . de ping statistics - - -
11 > 1 packets transmitted , 1 packets received , 0.0% packet loss

12 > round - trip min / avg / max / stddev = 0.561 /0 .561 /0 .561 /0 .000 ms� �

3 e)

In some exercise sheets we will use such shell commands to install missing Python modules.

Tutorial1 – Problem 3: Jupyter Introduction 10

Tutorial1 – Problem 3: Jupyter Introduction

3 d)

Code cells also allow to execute shell commands. These are executed as the user who started the Jupyter server. On your virtual machine
this is root. Shell commands can be executed by prefixing them with the ’!’ character.� �

1 ! pwd # the path where jupyter has been started

2 ! echo This user is executing the commands : $USER

3 ! ping - c 1 net . in . tum . de
4

5 > / Users / sattler / acn / exercise /2021
6 > This user is executing the commands : sattler

7 > PING net . in . tum . de (131 .159.15 .24) : 56 data bytes

8 > 64 bytes from 131.159.15.24: icmp_seq=0 ttl=63 time=0.561 ms

9

10 > - - - net . in . tum . de ping statistics - - -
11 > 1 packets transmitted , 1 packets received , 0.0% packet loss

12 > round - trip min / avg / max / stddev = 0.561 /0 .561 /0 .561 /0 .000 ms� �
3 e)

In some exercise sheets we will use such shell commands to install missing Python modules.

Tutorial1 – Problem 3: Jupyter Introduction 10

Tutorial1 – Problem 3: Jupyter Introduction

3 f)

Use the data from the previous cell to produce a CDF.

CDF = Cumulative Distribution Function

3 2 1 0 1 2 3 4
Value

0

100

200

300

400

500

600

Co
un

t

Histogram of a normal distribution: = 0, = 1

4 2 0 2 4
Value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

ed
 p

ro
ba

bi
lit

y

CDF of normal distribution: = 0, = 1

ax.hist(x, num_bins, cumulative=True, density=True)

Tutorial1 – Problem 3: Jupyter Introduction 11

Tutorial1 – Problem 3: Jupyter Introduction

3 f)

Use the data from the previous cell to produce a CDF.

CDF = Cumulative Distribution Function

3 2 1 0 1 2 3 4
Value

0

100

200

300

400

500

600

Co
un

t

Histogram of a normal distribution: = 0, = 1

4 2 0 2 4
Value

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

ed
 p

ro
ba

bi
lit

y

CDF of normal distribution: = 0, = 1

ax.hist(x, num_bins, cumulative=True, density=True)

Tutorial1 – Problem 3: Jupyter Introduction 11

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000

:: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001

::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001

ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2

fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6

fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f

2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000

:: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001

::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001

ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2

fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6

fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f

2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000 :: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001

::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001

ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2

fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6

fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f

2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000 :: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001 ::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001

ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2

fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6

fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f

2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000 :: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001 ::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001 ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2

fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6

fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f

2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000 :: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001 ::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001 ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2 fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6

fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f

2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000 :: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001 ::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001 ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2 fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6 fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f

2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 a)

Write a function convert_ipv6.

• remove leading zeros for each byte-pair (do not remove trailing ones)

• the longest series of consecutive 0s can be merged with ::

0000:0000:0000:0000:0000:0000:0000:0000 :: (unspecified address)

0000:0000:0000:0000:0000:0000:0000:0001 ::1 (localhost)

ff01:0000:0000:0000:0000:0000:0000:0001 ff01::1 (all nodes multicast address)

fe80:0000:0000:0000:4f21:13ff:fea1:dee2 fe80::4f21:13ff:fea1:dee2

fe80:0000:0000:0000:1f00:0000:0001:ede6 fe80::1f00:0:1:ede6

2001:4ca0:2001:3a40:e114:90fe:3862:444f 2001:4ca0:2001:3a40:e114:90fe:3862:444f

Tutorial1 – Problem 4: IPv6 12

Tutorial1 – Problem 4: IPv6

4 b)

Write a function generate_link_local.

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
4 b)

Write a function generate_link_local.

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

1111111 10 000xxxxxx xxxxxxxxxxxxxxxxx1111111111111110xxxxxxxxxxxxxxxxxxxxxxxxx

Prefix

fe80/10

Subnet Identifier

::

Interface Identifier

OUI

x

2nd Bit of the 1st octet of the OUI is inverted
ff:fe Device Identifier

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
4 b)

Write a function generate_link_local.

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

1111111 10 000xxxxxx xxxxxxxxxxxxxxxxx1111111111111110xxxxxxxxxxxxxxxxxxxxxxxxx

Prefix

fe80/10

Subnet Identifier

::

Interface Identifier

OUI

x

2nd Bit of the 1st octet of the OUI is inverted
ff:fe Device Identifier

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
4 b)

Write a function generate_link_local.

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

1111111 10 000xxxxxx xxxxxxxxxxxxxxxxx1111111111111110xxxxxxxxxxxxxxxxxxxxxxxxx

Prefix

fe80/10

Subnet Identifier

::

Interface Identifier

OUI

x

2nd Bit of the 1st octet of the OUI is inverted

ff:fe Device Identifier

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• The interface identifier is built according to the modified
EUI-64 format

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
4 b)

Write a function generate_link_local.

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

1111111 10 000xxxxxx xxxxxxxxxxxxxxxxx1111111111111110xxxxxxxxxxxxxxxxxxxxxxxxx

Prefix

fe80/10

Subnet Identifier

::

Interface Identifier

OUI

x

2nd Bit of the 1st octet of the OUI is inverted
ff:fe

Device Identifier

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• The interface identifier is built according to the modified
EUI-64 format

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
4 b)

Write a function generate_link_local.

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

1111111 10 000xxxxxx xxxxxxxxxxxxxxxxx1111111111111110xxxxxxxxxxxxxxxxxxxxxxxxx

Prefix

fe80/10

Subnet Identifier

::

Interface Identifier

OUI

x

2nd Bit of the 1st octet of the OUI is inverted
ff:fe Device Identifier

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• The interface identifier is built according to the modified
EUI-64 format

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
4 b)

Write a function generate_link_local.

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

1111111 10 000xxxxxx xxxxxxxxxxxxxxxxx1111111111111110xxxxxxxxxxxxxxxxxxxxxxxxx

Prefix

fe80/10

Subnet Identifier

::

Interface Identifier

OUI

x

2nd Bit of the 1st octet of the OUI is inverted
ff:fe Device Identifier

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• The interface identifier is built according to the modified
EUI-64 format

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
4 b)

Write a function generate_link_local.

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

1111111 10 000xxxxxx xxxxxxxxxxxxxxxxx1111111111111110xxxxxxxxxxxxxxxxxxxxxxxxx

Prefix

fe80/10

Subnet Identifier

::

Interface Identifier

OUI

x

2nd Bit of the 1st octet of the OUI is inverted
ff:fe Device Identifier

Link-Local Address as specified in RFC4291:

• First 10 bit: 1111 1110 10 (0xfe80)

• Remainder of the first 8 B set to 0

• OUI of the MAC address (first 3 B)
→ flip 2nd Bit of first Byte

• 1111 1111 1111 1110 (0xfffe)

• Device Identifier of the MAC address
(last 3 B)

• Example:
ether 7a:19:0e:68:46:d6

inet6 fe80::7819:eff:fe68:46d6/64

Implementation Details:

• Create empty bytearray:
var = bytearray(16)

• Set slices of the array:
var[0:2] = b’\x12\x34’

• Flip single bits:
mac[0] ˆ= 0x02

Tutorial1 – Problem 4: IPv6 13

Tutorial1 – Problem 4: IPv6
The Universal/Local Bit

• The second-least-significant bit of the first octet in a MAC address

• 0 indicates universally administered address

Why is it inverted?

RCF 4291 Section 2.5.1

make it easy for system administrators to hand configure non-global identifiers when hardware tokens are not available

• Else the first bit would need to be set

• Impossible to use simple interface identifiers like ::1

Tutorial1 – Problem 4: IPv6 14

Tutorial1 – Problem 4: IPv6
The Universal/Local Bit

• The second-least-significant bit of the first octet in a MAC address

• 0 indicates universally administered address

Why is it inverted?

RCF 4291 Section 2.5.1

make it easy for system administrators to hand configure non-global identifiers when hardware tokens are not available

• Else the first bit would need to be set

• Impossible to use simple interface identifiers like ::1

Tutorial1 – Problem 4: IPv6 14

Tutorial1 – Problem 4: IPv6
The Universal/Local Bit

• The second-least-significant bit of the first octet in a MAC address

• 0 indicates universally administered address

Why is it inverted?

RCF 4291 Section 2.5.1

make it easy for system administrators to hand configure non-global identifiers when hardware tokens are not available

• Else the first bit would need to be set

• Impossible to use simple interface identifiers like ::1

Tutorial1 – Problem 4: IPv6 14

Tutorial1 – Problem 4: IPv6

4 c)

Write two functions:

• compute_solicited_node_multicast

• compute_multicast_mac

• From RFC4291: ff02:0:0:0:0:1:ffxx:xxxx, with xx:xxxx being the last 3 B of the node’s IPv6 address

• Example: 2001:4ca0:2001:40:e114:90fe:3862:554f → ff02::1:ff62:554f

• From RFC2464: 33:33:xx:xx:xx:xx, with xx:xx:xx:xx being the last 4 B of the multicast IPv6 address

• Example: ff02::1:ff62:554f → 33:33:ff:62:55:4f

Tutorial1 – Problem 4: IPv6 15

Tutorial1 – Problem 4: IPv6

4 c)

Write two functions:

• compute_solicited_node_multicast

• compute_multicast_mac

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

11111111 1000000 00111111111xxxxxxxxxxxxxxxxxxxxxxxx

Prefix

ff02/16 :: 01:ff Last 3 B of the IPv6

Solicited Node Multicast Address:

• From RFC4291: ff02:0:0:0:0:1:ffxx:xxxx, with xx:xxxx being the last 3 B of the node’s IPv6 address

• Example: 2001:4ca0:2001:40:e114:90fe:3862:554f → ff02::1:ff62:554f

• From RFC2464: 33:33:xx:xx:xx:xx, with xx:xx:xx:xx being the last 4 B of the multicast IPv6 address

• Example: ff02::1:ff62:554f → 33:33:ff:62:55:4f

Tutorial1 – Problem 4: IPv6 15

Tutorial1 – Problem 4: IPv6

4 c)

Write two functions:

• compute_solicited_node_multicast

• compute_multicast_mac

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

11111111 1000000 00111111111xxxxxxxxxxxxxxxxxxxxxxxx

Prefix

ff02/16 :: 01:ff Last 3 B of the IPv6

Solicited Node Multicast Address:

• From RFC4291: ff02:0:0:0:0:1:ffxx:xxxx, with xx:xxxx being the last 3 B of the node’s IPv6 address

• Example: 2001:4ca0:2001:40:e114:90fe:3862:554f → ff02::1:ff62:554f

• From RFC2464: 33:33:xx:xx:xx:xx, with xx:xx:xx:xx being the last 4 B of the multicast IPv6 address

• Example: ff02::1:ff62:554f → 33:33:ff:62:55:4f

Tutorial1 – Problem 4: IPv6 15

Tutorial1 – Problem 4: IPv6

4 c)

Write two functions:

• compute_solicited_node_multicast

• compute_multicast_mac

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

11111111 1000000 00111111111xxxxxxxxxxxxxxxxxxxxxxxx

Prefix

ff02/16 :: 01:ff Last 3 B of the IPv6

Solicited Node Multicast Address:

• From RFC4291: ff02:0:0:0:0:1:ffxx:xxxx, with xx:xxxx being the last 3 B of the node’s IPv6 address

• Example: 2001:4ca0:2001:40:e114:90fe:3862:554f → ff02::1:ff62:554f

Multicast MAC:

• From RFC2464: 33:33:xx:xx:xx:xx, with xx:xx:xx:xx being the last 4 B of the multicast IPv6 address

• Example: ff02::1:ff62:554f → 33:33:ff:62:55:4f

Tutorial1 – Problem 4: IPv6 15

Tutorial1 – Problem 4: IPv6

4 c)

Write two functions:

• compute_solicited_node_multicast

• compute_multicast_mac

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

11111111 1000000 00111111111xxxxxxxxxxxxxxxxxxxxxxxx

Prefix

ff02/16 :: 01:ff Last 3 B of the IPv6

Solicited Node Multicast Address:

• From RFC4291: ff02:0:0:0:0:1:ffxx:xxxx, with xx:xxxx being the last 3 B of the node’s IPv6 address

• Example: 2001:4ca0:2001:40:e114:90fe:3862:554f → ff02::1:ff62:554f

Multicast MAC:

• From RFC2464: 33:33:xx:xx:xx:xx, with xx:xx:xx:xx being the last 4 B of the multicast IPv6 address

• Example: ff02::1:ff62:554f → 33:33:ff:62:55:4f

Tutorial1 – Problem 4: IPv6 15

Tutorial1 – Problem 4: IPv6

4 c)

Write two functions:

• compute_solicited_node_multicast

• compute_multicast_mac

7 ... 0
0

7 ... 0
1

7 ... 0
2

7 ... 0
3

7 ... 0
4

7 ... 0

5
7 ... 0

6
7 ... 0

7
7 ... 0

8
7 ... 0

9
7 ... 0

10
7 ... 0

11
7 ... 0

12
7 ... 0

13
7 ... 0

14
7 ... 0

15B
bit

11111111 1000000 00111111111xxxxxxxxxxxxxxxxxxxxxxxx

Prefix

ff02/16 :: 01:ff Last 3 B of the IPv6

Solicited Node Multicast Address:

• From RFC4291: ff02:0:0:0:0:1:ffxx:xxxx, with xx:xxxx being the last 3 B of the node’s IPv6 address

• Example: 2001:4ca0:2001:40:e114:90fe:3862:554f → ff02::1:ff62:554f

Multicast MAC:

• From RFC2464: 33:33:xx:xx:xx:xx, with xx:xx:xx:xx being the last 4 B of the multicast IPv6 address

• Example: ff02::1:ff62:554f → 33:33:ff:62:55:4f

Tutorial1 – Problem 4: IPv6 15

Tutorial1 – Problem 4: IPv6

4 d)

Write a function count_ones (only the last 64bits).

Implementation Details:

• Work on bytearray or strings?

• ’01010111’.count(’1’) = 5

• bin(int.from_bytes(bytearray(b’\xff\xfe’), byteorder=’big’, signed=False)).count(’1’)

Tutorial1 – Problem 4: IPv6 16

Tutorial1 – Problem 4: IPv6

4 d)

Write a function count_ones (only the last 64bits).

811b : d503 : 8064 : b1ad : 59ba : 65d1 : df7e : 6720

: : : :0101100110111010:0110010111010001:1101111101111110:0110011100100000

9 8 13 6

Implementation Details:

• Work on bytearray or strings?

• ’01010111’.count(’1’) = 5

• bin(int.from_bytes(bytearray(b’\xff\xfe’), byteorder=’big’, signed=False)).count(’1’)

Tutorial1 – Problem 4: IPv6 16

Tutorial1 – Problem 4: IPv6

4 d)

Write a function count_ones (only the last 64bits).

811b : d503 : 8064 : b1ad : 59ba : 65d1 : df7e : 6720

: : : :0101100110111010:0110010111010001:1101111101111110:0110011100100000

9 8 13 6

Implementation Details:

• Work on bytearray or strings?

• ’01010111’.count(’1’) = 5

• bin(int.from_bytes(bytearray(b’\xff\xfe’), byteorder=’big’, signed=False)).count(’1’)

Tutorial1 – Problem 4: IPv6 16

Tutorial1 – Problem 4: IPv6

4 d)

Write a function count_ones (only the last 64bits).

811b : d503 : 8064 : b1ad : 59ba : 65d1 : df7e : 6720

: : : :0101100110111010:0110010111010001:1101111101111110:0110011100100000

9 8 13 6

Implementation Details:

• Work on bytearray or strings?

• ’01010111’.count(’1’) = 5

• bin(int.from_bytes(bytearray(b’\xff\xfe’), byteorder=’big’, signed=False)).count(’1’)

Tutorial1 – Problem 4: IPv6 16

Tutorial1 – Problem 4: IPv6

4 d)

Write a function count_ones (only the last 64bits).

811b : d503 : 8064 : b1ad : 59ba : 65d1 : df7e : 6720

: : : :0101100110111010:0110010111010001:1101111101111110:0110011100100000

9 8 13 6

Implementation Details:

• Work on bytearray or strings?

• ’01010111’.count(’1’) = 5

• bin(int.from_bytes(bytearray(b’\xff\xfe’), byteorder=’big’, signed=False)).count(’1’)

Tutorial1 – Problem 4: IPv6 16

Tutorial1 – Problem 4: IPv6

4 e)

Explain how the addresses in the two datasets differ.
Give a reason for the differences and what kind of addresses are most likely contained in each dataset.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

of 1

D
en

si
ty

Dataset 1
N (32, 4)

6519:1476:c881:1908:d668:f0b2:1e02:7728

811b:d503:8064:b1ad:59ba:65d1:df7e:6720

706b:dc6:dc20:1727:99a6:db7f:79ca:3c19

d48d:1cf8:7fd3:527b:e81f:1cd5:ddd4:ac69

4a1e:70fe:9494:a0b5:4c88:6e8:7c63:ac10

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

of 1

D
en

si
ty

Dataset 2

2bf3:dd0f:1810:a913::4002:1

14a9:d441:bba:2856::4000:8080:41

d273:f263:8440:fa2c:68:200:4000:101

b738:4db6:a21:a007::1

62ba:2e95:ed41:cfd5:8::401:a1

Tutorial1 – Problem 4: IPv6 17

Tutorial1 – Problem 4: IPv6

4 e)

Explain how the addresses in the two datasets differ.
Give a reason for the differences and what kind of addresses are most likely contained in each dataset.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

of 1

D
en

si
ty

Dataset 1
N (32, 4)

6519:1476:c881:1908:d668:f0b2:1e02:7728

811b:d503:8064:b1ad:59ba:65d1:df7e:6720

706b:dc6:dc20:1727:99a6:db7f:79ca:3c19

d48d:1cf8:7fd3:527b:e81f:1cd5:ddd4:ac69

4a1e:70fe:9494:a0b5:4c88:6e8:7c63:ac10

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

of 1

D
en

si
ty

Dataset 2

2bf3:dd0f:1810:a913::4002:1

14a9:d441:bba:2856::4000:8080:41

d273:f263:8440:fa2c:68:200:4000:101

b738:4db6:a21:a007::1

62ba:2e95:ed41:cfd5:8::401:a1

Tutorial1 – Problem 4: IPv6 17

Tutorial1

Next Steps:

• Update your solution

• Do not copy-paste this sample solution

Tutorial1 18

	Outline
	Announcements
	Tutorial1 – Problem 0: Getting Access
	Tutorial1 – Problem 1: Git Access
	Tutorial1 – Problem 2: SSH and Virtual Machine (VM) Access
	Tutorial1 – Problem 3: Jupyter Introduction
	Tutorial1 – Problem 4: IPv6
	Tutorial1

