Advanced Computer Networking (ACN)

Exercise 2 - Solution

Prof. Dr.-Ing. Georg Carle

Sebastian Gallenmüller, Max Helm, Benedikt Jaeger, Marcel Kempf, Patrick Sattler, Johannes Zirngibl

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich Outline

Announcements

Tutorial2 - Problem 1: Wireshark

Tutorial2 – Problem 2: Spanning Tree Protocol

Tutorial2 – Problem 3: Network Topology and Tracing Routes

For questions and problems:

- Always use this mail address: acn@net.in.tum.de
- If you reply to a mail always use Reply All, usually results in a faster response

Tutorial

- Deadline for tutorial2 was ~15 minutes ago
- If you haven't yet, commit and push your solution now

1 a)

Briefly explain which purpose the FCS serves and how it is computed.

1 a)

Briefly explain which purpose the FCS serves and how it is computed.

- Frame Check Sequence
- Bit error detection \rightarrow discard frame if FCS is wrong
- No error correction
- Computed using CRC32

Write the body of the given function extend_hexdump().

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A										

Write the body of the given function extend_hexdump().

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								FC	S							

1 c)

Write two functions which return the source and destination MAC of a given Ethernet frame.

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								FC	S							

Write two functions which return the source and destination MAC of a given Ethernet frame.

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
		Des	tinat	ion N	ЛАС			So	urce	MAC	;					
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								FC	S							

6

πп

1 d)

Try to identify the hardware vendors, based on MAC addresses given in the IPv6 hexdump.

00:25:90:54:73:9A

1 d)

Try to identify the hardware vendors, based on MAC addresses given in the IPv6 hexdump.

- MAC Address: 48 bit long L2 address
- Organisation Unique Identifier (OUI): first 3 B identify hardware manufacturer
- Online lookup, e.g.: http://standards-oui.ieee.org/oui.txt
 - C4:2A:D0 \rightarrow Apple, Inc
 - 4C: 34: 88 \rightarrow Intel Corporate
 - $04:D3:B0 \rightarrow$ Intel Corporate

1 d)

Try to identify the hardware vendors, based on MAC addresses given in the IPv6 hexdump.

- MAC Address: 48 bit long L2 address
- Organisation Unique Identifier (OUI): first 3 B identify hardware manufacturer
- Online lookup, e.g.: http://standards-oui.ieee.org/oui.txt
 - C4:2A:D0 \rightarrow Apple, Inc
 - 4C:34:88 \rightarrow Intel Corporate
 - $04:D3:B0 \rightarrow$ Intel Corporate

What about 33:33:FF:D7:6D:A0?

1 d)

Try to identify the hardware vendors, based on MAC addresses given in the IPv6 hexdump.

- MAC Address: 48 bit long L2 address
- Organisation Unique Identifier (OUI): first 3 B identify hardware manufacturer
- Online lookup, e.g.: http://standards-oui.ieee.org/oui.txt
 - C4:2A:D0 \rightarrow Apple, Inc
 - 4C: 34: 88 \rightarrow Intel Corporate
 - $04:D3:B0 \rightarrow$ Intel Corporate

What about 33:33:FF:D7:6D:A0?

- IPv6 Multicast Address (RFC 2464, Section 7)
- 33:33:[last 4 octets of the IPv6 address]

Write a function that returns the type of the layer 3 payload. It should return 4/6 for IPv4/IPv6 and None otherwise.

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
		Des	tinat	ion N	/AC			S	ource	MAC	;					
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
0x0030	00	01	FF	D7	6D	A0	87	00	19	С9	00	00	00	00	20	01
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								F	CS							

ПΠ

ТШ

Tutorial2 – Problem 1: Wireshark

1 e)

Write a function that returns the type of the layer 3 payload. It should return 4/6 for IPv4/IPv6 and None otherwise.

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
		Des	tinat	ion N	/AC			S	ource	MAC	;		Ethe	rtype)	
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								FC	CS							

1 e)

Write a function that returns the type of the layer 3 payload. It should return 4/6 for IPv4/IPv6 and None otherwise.

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
		Des	tinat	ion N	ЛАС			S	ource	MAC			Ethe	rtype		

Ethertype	Protocol
0x0800	IPv4 (Internet Protocol, Version 4)
0×0806	ARP (Address Resolution Protocol)
0x0842	WoL (Wake on Lan)
0x8035	RARP (Reverse ARP)
0x814c	SNMP (Simple Network Management Protocol)
0x86dd	IPv6 (Internet Protocol, Version 6)

How can the beginning of the payload be determined for Ethernet frames?

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
		Des	tinat	ion N	ЛАС			So	ource	MAC			Ethe	rtype)	
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								FC	S							

1 g)

How can the beginning of the payload be determined for IP packets? What is the difference between IPv4 and IPv6?

1 g)

How can the beginning of the payload be determined for IP packets? What is the difference between IPv4 and IPv6?

• Ethernet header \rightarrow fixed length

IPv4

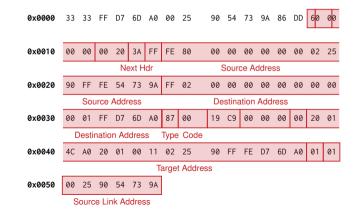
- Variable length
- → Internet Header Length (IHL)

IPv6

- · Fixed length but has extension headers
- Next Header points to Extension Header
- \rightarrow Extension header has Length field

1 h)

Write three functions:


• cutL2PDU() shall return a bytearray containing the Layer 2 PDU

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
		Des	tinat	ion N	ЛАС			Sou	irce	MAC		1	Ethe	rtype)	
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
				Ne	ext H	dr			5	Sour	ce A	ddres	SS			
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
		Soι	urce	Addr	ess				De	stina	tion	Add	ress			
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
	C	Desti	natio	n Ad	dres	S	Туре	Code								
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
						Ta	arget	Addres	s							
0x0050	00	25	90	54	73	9A										
	S	ourc	e Lir	ık Ac	dres	s										

пп

Write three functions:

- cutL2PDU() shall return a bytearray containing the Layer 2 PDU
- cutL2SDU() shall return a bytearray containing the Layer 2 SDU

1 h)

Write three functions:

- cutL2PDU() shall return a bytearray containing the Layer 2 PDU
- cutL2SDU() shall return a bytearray containing the Layer 2 SDU
- cutIPPDU() shall return a bytearray containing the Layer 3 PDU.

0x0000	33	33	FF	D7	6D	A0	00	25	90	54	73	9A	86	DD	60	00
0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
				Ne	ext H	dr			5	Sour	ce A	ddres	SS			
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
		Sou	irce	Addr	ess				De	stina	tion	Add	ress			
0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
	C)estii	natio	n Ad	dres	S	Туре	Code								
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
						Т	arget	Addres	s							
0x0050	00	25	90	54	73	9A										
	S	ourc	e Lir	nk Ac	dres	s										

1 i)

Write a function which helps to identify the type of payload an IPv4 or IPv6 packet is carrying. [...]

It should return a bytearray containing the L4 payload identifier or an empty bytearray if neither an IPv4 nor an IPv6 payload was found.

1 i)

Write a function which helps to identify the type of payload an IPv4 or IPv6 packet is carrying. [...]

It should return a bytearray containing the L4 payload identifier or an empty bytearray if neither an IPv4 nor an IPv6 payload was found.

0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
				Ne	ext H	dr			5	Sour	ce A	ddre	SS			
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
		Soι	urce	Addr	ess				De	stina	tion	Add	ress			

1 j)

Based on your answer of i), what are the protocols contained in the two given hexdumps.

0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25	
		Next Hdr								Source Address							
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00	
		Source Address								estina	ation	Add	ress				

1 j)

Based on your answer of i), what are the protocols contained in the two given hexdumps.

0x0010	00	00	00	20	3A	FF	FE	80	00	00	00	00	00	00	02	25
				Ne	ext H	dr Source Address										
0x0020	90	FF	FE	54	73	9A	FF	02	00	00	00	00	00	00	00	00
		Soι	urce	Addr	ess				De	estina	ation	Add	ress			
	ocol Number / Next Header Protocol															
Protocol Nun	ıber	/ Ne:	xt He	eade	r	Prot	ocol									
Protocol Nun	ıber	/ Ne:	xt He	eade 0x0 ⁻	-			(Inter	net Co	ontrol	Mes	sag	e Pro	otoco	ol, Ve	ersio
rotocol Nun	ber	/ Ne:	xt He		1	ICM	Pv4	(Inter		ontrol	Mes	sag	e Pro	otoco	ol, Ve	ersio
Protocol Nun	nber	/ Ne:	xt He	0x0	1	ICM IPv4	Pv4 enc	apsul				0		otoco	ol, Ve	ersio
Protocol Nun	ıber	/ Ne:	xt He	0x0 ² 0x04	1 1 5	ICM IPv4 TCP	Pv4 enc	apsul Insmi	ation	Conti	rol Pi	rotoc		otoco	ol, Ve	ersio
Protocol Nun	iber	/ Ne:	xt He	0×0 0×04 0×04	1 1 5 1	ICM IPv4 TCP UDF	Pv4 enc (Tra P (Us	apsul Insmi	ation ssion (tagrar	Conti	rol Pi	rotoc		otoco	ol, Ve	ersio
Protocol Nun	iber	/ Ne:	xt He	0x0 0x04 0x04 0x06	1 4 5 1	ICM IPv4 TCP UDF IPv6	Pv4 enc (Tra (Us enc	apsul Insmis er Da apsul	ation ssion (tagrar	Conti n Pro	rol Pi otoco	rotoc ol)	ol)		ol, V€	ersio
Protocol Nun	iber	/ Ne:	xt He	0x0 0x04 0x04 0x11 0x11	1 4 5 1 9	ICM IPv4 TCP UDF IPv6 GRE	Pv4 enc (Tra (Us enc E (Ge	apsul insmis er Da apsul eneral	ation ssion (tagrar ation	Conti n Pro ng E	rol Protoco ncap	rotoc ol) osula	ol) tion)			

1 k)

Explain the header fields (header fields and the content type) and the content of the IPv4 packet identified in j). **1 I)**

Explain the header fields (header fields and the content type) and the content type of the IPv6 packet identified in j) and how this relates to the answer in d).

0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
	C)estii	natio	n Ad	dres	s										
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								FCS	S							

1 k)

Explain the header fields (header fields and the content type) and the content of the IPv4 packet identified in j). 1 I)

Explain the header fields (header fields and the content type) and the content type of the IPv6 packet identified in i) and how this relates to the answer in d).

0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
	C	Destii	natio	n Ad	dres	S	Туре	Code								
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	AØ	01	01
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
								FCS	S							

Туре	Code	Description
128 (0×80)	0	Echo Request
129 (0x81)	0	Echo Reply
133 (0x85) - Router Solicitation	0	NDP (Neighbor Discovery Protocol)
134 (0x86) – Router Advertisement	0	NDP (Neighbor Discovery Protocol)
135 (0x87) - Neighbor Solicitation	0	NDP (Neighbor Discovery Protocol)
136 (0x88) - Neighbor Advertisement	0	NDP (Neighbor Discovery Protocol)

1 k)

Explain the header fields (header fields and the content type) and the content of the IPv4 packet identified in j). **1** I)

Explain the header fields (header fields and the content type) and the content type of the IPv6 packet identified in j) and how this relates to the answer in d).

0x0030	00	01	FF	D7	6D	A0	87	00	19	C9	00	00	00	00	20	01
	Destination Address Type Code															
0x0040	4C	A0	20	01	00	11	02	25	90	FF	FE	D7	6D	A0	01	01
						Та	arge	t Addres	s							
0x0050	00	25	90	54	73	9A	FF	FF	FF	FF						
	S	ourc	e Lir	ık Ac	Idres	s		FCS	3							

Туре	Code	Description
128 (0×80)	0	Echo Request
129 (0x81)	0	Echo Reply
133 (0x85) - Router Solicitation	0	NDP (Neighbor Discovery Protocol)
134 (0x86) – Router Advertisement	0	NDP (Neighbor Discovery Protocol)
135 (0x87) – Neighbor Solicitation	0	NDP (Neighbor Discovery Protocol)
136 (0x88) - Neighbor Advertisement	0	NDP (Neighbor Discovery Protocol)

2 a)

What is the difference between a shortest path tree (SPT) and a minimum spanning tree (MST)?

2 a)

What is the difference between a shortest path tree (SPT) and a minimum spanning tree (MST)?

- SPT shortest path between one root node to all other nodes
- MST connect all nodes in a network with the minimum total weight

2 b)

Explain the problem that is being solved by using the spanning tree protocol in a switched network.

2 b)

Explain the problem that is being solved by using the spanning tree protocol in a switched network.

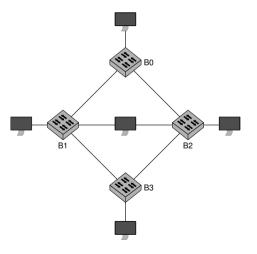
- No TTL or max hops on layer 2
- STP is useful to handle loops on layer 2
- STP recomputes paths and can use backup paths if a bridge fails

2 c)

Explain the purpose of the root bridge and how it is elected.

2 c)

Explain the purpose of the root bridge and how it is elected.

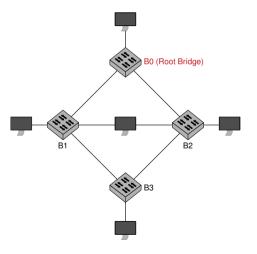

- The root bridge acts as a reference point
- It is determined via an election process:
 - · Initially each bridge assumes it is the root bridge
 - Each bridge starts transmitting bridge protocol data units (BPDUs) bridge ID, root bridge ID, distance to root bridge
 - Bridge ID contains itself a configurable priority parameter
 - · Each bridge listens for BDPUs but does not forward them
 - The port with the lowest root bridge ID received will be the new root port
 - · If two ports connect to the root bridge the one with the higher cost or if equal the one with the higher id gets blocked
 - The other ports become designated ports

Tutorial2 – Problem 2: Spanning Tree Protocol

2 d)

How does the resulting spanning tree look like after the spanning tree algorithm has been applied to the given network topology?

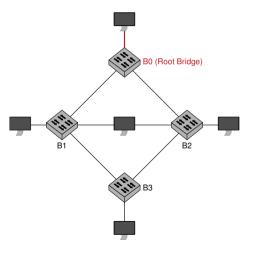
We use another topology here.



ПΠ

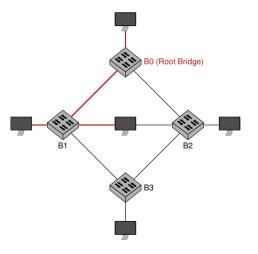
2 d)

How does the resulting spanning tree look like after the spanning tree algorithm has been applied to the given network topology?


We use another topology here.

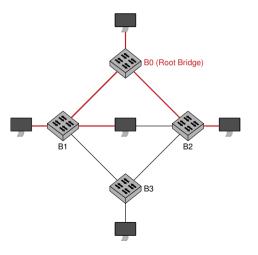
2 d)

How does the resulting spanning tree look like after the spanning tree algorithm has been applied to the given network topology?


We use another topology here.

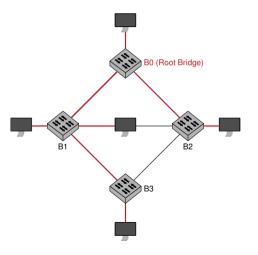
2 d)

How does the resulting spanning tree look like after the spanning tree algorithm has been applied to the given network topology?


We use another topology here.

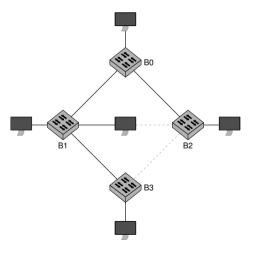
2 d)

How does the resulting spanning tree look like after the spanning tree algorithm has been applied to the given network topology?

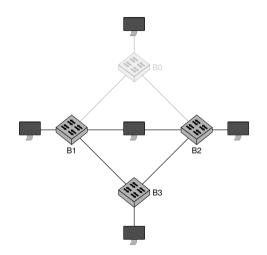

We use another topology here.

2 d)

How does the resulting spanning tree look like after the spanning tree algorithm has been applied to the given network topology?


We use another topology here.

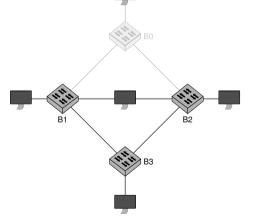
2 d)


How does the resulting spanning tree look like after the spanning tree algorithm has been applied to the given network topology?

We use another topology here.

2 e)

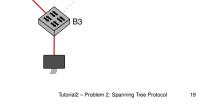
What happens if bridge B1 (in this case B0) fails?



ТΠ

2 e)

What happens if bridge B1 (in this case B0) fails?


- It stops transmitting BPDUs
- After a specified period other bridge will recognize it is gone
- The algorithm for the root bridge selection starts again
- Any network only connected to B0 will not be reachable

2 e)

What happens if bridge B1 (in this case B0) fails?

- It stops transmitting BPDUs
- After a specified period other bridge will recognize it is gone
- The algorithm for the root bridge selection starts again
- Any network only connected to B0 will not be reachable

MH

B2

B1

(Root Bridge)

3 a)

Explain the basic principle behind traceroute

3 a)

Explain the basic principle behind traceroute

- Send IP packets with increasing TTL values
- When the TTL reaches 0 the router discards the packet and creates an ICMP Time Exceeded / TTL Exceeded, which is returned to the sender
- This error message contains the IP address of the router that discarded the packet (source IP) as well as parts of the original packet
- Traceroute can be used to:
 - detect network problems
 - analyze routing behavior
 - get an approximate path length to a host

3 b)

Discuss the advantages and disadvantages when using packets with different protocols / payload types to generate the traces.

Discuss the advantages and disadvantages when using packets with different protocols / payload types to generate the traces.

- ICMP: Sends ICMP echo request packets
 - receives ICMP TTL exceeded error packets
 - requires root privileges
- TCP: Sends TCP SYN packets
 - receives ICMP TTL exceeded error packets
 - requires root privileges
 - uses port 80 to bypass firewalls
- UDP: Sends UDP packets
 - receives ICMP TTL exceeded error packets
 - does not require root privileges
 - · uses increasing unlikely port numbers or a fixed port
 - receiving part can be confused by random payload
 - last hop often does not reply

Нор	IP Address	reverse name	ASN		Latencies [ms]	
1	217.10.64.29	hydra-atlasgw.netzquadrat.net	AS15594	3.898ms	0.589ms	0.408ms
2	217.10.64.9	c12-1-e1-3.netzquadrat.net	AS15594	0.771ms	0.741ms	0.795ms
3	213.83.57.97		AS12306	30.387ms	30.362ms	30.662ms
4	82.98.102.6		AS12306	30.691ms	30.617ms	30.604ms
5	212.162.24.57	edge4.frankfurt1.level3.net	AS3356	30.156ms	30.166ms	30.241ms
6				•	•	
7	4.15.122.46	cenic.ear1.sanjose1.level3.net	AS3356	174.041ms	174.36ms	173.828ms
8	137.164.11.31	dc-svl-agg8-svl-agg4-100ge-2.cenic.net	AS2152	175.205ms		
	137.164.11.29	dc-svl-agg8–svl-agg4-100ge-1.cenic.net	AS2152	180.28ms	186.577ms	
9	137.164.11.0	dc-lax-agg8-svl-agg8-100ge-1.cenic.net	AS2152	180.29ms		
	137.164.11.66	lax-agg8–svl-agg8-100g-3.cenic.net	AS2152	186.731ms	181.244ms	
10	137.164.11.34	dc-lax-agg6–lax-agg8-100ge-3.cenic.net	AS2152	180.057ms	185.605ms	
	137.164.11.6	dc-lax-agg6-lax-agg8-100ge-2.cenic.net	AS2152	180.049ms		
11	137.164.11.61	tus-agg8–lax-agg6-100g-3.cenic.net	AS2152	187.539ms		
	137.164.11.23	dc-tus-agg8-lax-agg6-100ge-1.cenic.net	AS2152	181.976ms	182.336ms	
12	137.164.11.51	sdg-agg4-tus-agg8-3x100ge.cenic.net	AS2152	187.272ms	181.621ms	182.033ms
13	137.164.23.43	dc-sdsc-100ge-sdg-agg4.cenic.net	AS2152	182.134ms	187.637ms	186.656m
14	192.12.207.46	medusa-mx960.sdsc.edu	AS195	181.975ms	182.095ms	189.205ms
15	192.172.226.78	rommie.caida.org	AS1909	187.69ms	181.883ms	181.526ms

The following measurements were performed via RIPE Atlas. You can lookup the results [1]

[1] Measurements from DE https://atlas.ripe.net/measurements/23212460

Measurements from GB https://atlas.ripe.net/measurements/23212455

3 c) What does the line * * * mean?

6 * * *

3 c)

What does the line * * * mean?

6 * * *

• The asterisks signal that no answer was received

3 d)

Compare the command results to the given trace and explain what you find.

3 d)

Compare the command results to the given trace and explain what you find.

Given command executes an IPv4 traceroute

3 d)

Compare the command results to the given trace and explain what you find.

Given command executes an IPv4 traceroute

	IPv6		IPv4		
Нор	Domain	RTT	RTT	Domain	
2	2a00:4700:0:8::1	1.512 ms	0.497 ms	nz-csr1-kw5-bb1.rbg.tum.de	
3	2a00:4700:0:1::3	1.458 ms	0.946 ms	vl-3010.csr1-2wr.lrz.de	
4	-	-	9.302 ms	cr-fra2-be14.x-win.dfn.de	
5	cr-fra2-be14.x-win.dfn.de	10.762 ms	9.299 ms	cr-fra2-be14.x-win.dfn.de	
6	dfn.mx1.fra.de.geant.net	10.881 ms	9.206 ms	dfn.mx1.fra.de.geant.net	
7	ae7.mx1.ams.nl.geant.net	16.758 ms	15.709 ms	ae7.mx1.ams.nl.geant.net	
8	internet2-gw.mx1.ams.nl.geant.net	111.152 ms	103.953 ms	internet2-gw.mx1.ams.nl.geant.net	
9	ashb.net.internet2.edu	166.537 ms	-	-	
10	ashb.net.internet2.edu	167.301 ms	-	-	
11	clev.net.internet2.edu	166.439 ms		-	
12	eqch.net.internet2.edu	167.631 ms	-	-	
13	eqch.net.internet2.edu	167.947 ms		-	
14	fchic.net.internet2.edu	166.520 ms	-	-	
15	kans.net.internet2.edu	167.196 ms		-	
16	denv.net.internet2.edu	167.063 ms		-	
17	salt.net.internet2.edu	167.973 ms	-	-	
18	losa.net.internet2.edu	165.542 ms	-	-	
19	hpr-lax-agg10-i2.cenic.net	164.806 ms	168.401 ms	hpr-lax-agg10-i2.cenic.net	
20	-	-	168.709 ms	hpr-sdsc-100ge-sdg-hpr3.cenic.net	
21	hpr-sdsc-100ge-sdg-hpr3.cenic.net	167.048 ms	166.069 ms	hpr-sdsc-100ge-sdg-hpr3.cenic.net	
22	2001:48d0:101:501::122	167.055 ms	169.137 ms	rommie.caida.org	

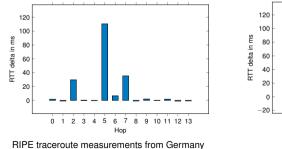
ТШ

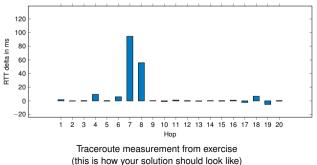
3 e)

Plot the average RTT deltas between consecutive hops from the given traceroute output

ТШ

3 e)

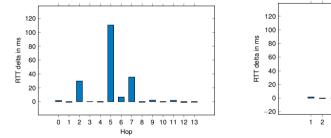

Plot the average RTT deltas between consecutive hops from the given traceroute output


- read values per hop
- average per hop values
- compute diff between hops
- plot bar graph with diffs

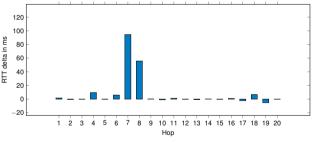
3 e)

Plot the average RTT deltas between consecutive hops from the given traceroute output

- read values per hop
- average per hop values
- compute diff between hops
- plot bar graph with diffs


3 f)

Try to find an explanation for the largest RTT difference calculated in the previous subproblem


3 f)

Try to find an explanation for the largest RTT difference calculated in the previous subproblem

RIPE traceroute measurements from Germany

 between hop 5 and 7 most probably the transatlantic link is located

Traceroute measurement from exercise (this is how your solution should look like)

3 g)

Explain why the RTT differences should be always positive in theory. Why does this assumption not always hold in practice?

3 g)

Explain why the RTT differences should be always positive in theory. Why does this assumption not always hold in practice?

- · A negative difference means, that the next hop is sending out ICMP responses faster than the previous hop
- There are different possible reason for this seemingly counter intuitive behavior:
 - the slower router performs ICMP throttling
 - Packets generating an ICMP error response have lower priority

3 h)

Try to find out different ways to determine the approximate geographical location of the hops in the given traceroute.

3 h)

Try to find out different ways to determine the approximate geographical location of the hops in the given traceroute.

- GeoIP location services, e.g. Maxmind [1]
- location hints in DNS names however this information may be wrong
- RTT triangulation
- Crowd sourced data [2]
- Some providers offer additional information: e.g., GEANT [3]
- Some operators offer rough maps of their network, e.g., RedCLARA [4]

[1] https://www.maxmind.com/en/geoip-demo

[2] https://ipmap.ripe.net/

[3] https://www.geant.org/Networks/Network_Operations/PublishingImages/Pages/GEANT_Operations_Centre/GOC-2019013102-GEANT%20ticket%20city%20codes%20table.pdf
[4] https://www.redclara.net/index.php/en/red/redclara/topologia-actual-de-la-red

3 i)

Examples:

- rDNS location hints:
 - dfn.mx1.fra.de.geant.net

3 i)

Examples:

- rDNS location hints:
 - dfn.mx1.fra.de.geant.net
 - FRA is the IATA airport code for Frankfurt DE
 - Geant table can also be used

3 i)

Examples:

- rDNS location hints:
 - dfn.mx1.fra.de.geant.net
 - FRA is the IATA airport code for Frankfurt DE
 - Geant table can also be used
- Maxmind GeoIP:
 - Freely provided data for IPv6 is coarse and only available on a country basis