
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Advanced Computer Networking (ACN)

IN2097 – WiSe 2024–2025

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller

Christian Dietze, Max Helm, Benedikt Jaeger,
Marcel Kempf, Jihye Kim, Patrick Sattler

Chair of Network Architectures and Services
School of Computation, Information, and Technology

Technical University of Munich

Software-Defined Networking

Introduction

OpenFlow

Introduction

Core concepts

Example

NFV

P4

Motivation

P4 targets

P4 Core

P4 example: IPv4 router

Active area of research

Software-Defined Networking 1

Software-Defined Networking

Acknowledgements

Bibliography

Software-Defined Networking 2

Software-Defined Networking

Introduction

OpenFlow

NFV

P4

Acknowledgements

Bibliography

Software-Defined Networking 3

Introduction
Management Plane, Control Plane, and Data Plane

forwarding table

forwarding

decide

configure

forwarding table
updates

forwarding table
lookups

e.g. spanning
tree protocol

e.g. spanning
tree protocol

incoming frame outgoing frame

Control Plane

Management
Plane

Data Plane:
per-packet
processing

Software-Defined Networking — Introduction 4

Introduction
Tasks of the Management Plane, Control Plane, and Data Plane
Management Plane:

• Allows access for administrators to the configuration of the other planes

• Tuning the parameters of the underlying algorithms

Control Plane:

• Has rules about which frames should go where

• Creates lookup tables from those rules

• Provides lookup tables for the data plane

Data Plane (also called Forwarding Plane):

• Uses lookup tables provided by the control plane

• Actually touches / forwards frames

Example: Tasks of the different planes in a router

• Management Plane: configuring link costs

• Control Plane: creating a routing table

• Data Plane: forwarding of frames according to routing table

Software-Defined Networking — Introduction 5

Introduction
Tasks of the Management Plane, Control Plane, and Data Plane
Management Plane:

• Allows access for administrators to the configuration of the other planes

• Tuning the parameters of the underlying algorithms

Control Plane:

• Has rules about which frames should go where

• Creates lookup tables from those rules

• Provides lookup tables for the data plane

Data Plane (also called Forwarding Plane):

• Uses lookup tables provided by the control plane

• Actually touches / forwards frames

Example: Tasks of the different planes in a router

• Management Plane: configuring link costs

• Control Plane: creating a routing table

• Data Plane: forwarding of frames according to routing table

Software-Defined Networking — Introduction 5

Introduction
Standard Telecommunication Architectures

Traditional architectures consist of three planes:

• management plane,

• control plane,

• and data plane.

What is a plane?

A plane is a group of algorithms and network protocols.

These protocols and algorithms

• process different kinds of traffic,

• have different performance requirements,

• are designed using different methodologies,

• are implemented using different programming languages,

• run on different hardware.

Software-Defined Networking — Introduction 6

Introduction
Standard Telecommunication Architectures

Problems with the standard approach

Implementations

• depend heavily on hardware platform and chip vendor,

• depend on the specific vendor implementation,

• offer limited access to the source code,

• are updated rarely or slowly (cf. adoption of IPv6),

• are often changing from one vendor to another.

Software-Defined Networking — Introduction 7

Introduction
SDN to the rescue

What is SDN?

• Software-Defined Networking

• Provides a layer of abstraction from the physical network

How does it do that?

• Historically, devices include both, the control plane and the data plane

• SDN has one central control plane, which manages all the data planes of all the switches

Software-Defined Networking — Introduction 8

Introduction
Illustration

• In your datacenter, you know your traffic flows. It is your datacenter!

• How can you optimize your traffic flows?
• VM1 to VM3 should flow via W Z Y
• VM2 to VM4 should flow via W X Y

Hypervisor 1

VM1

VM2

Hypervisor 2

VM3

VM4

Switch W Switch Y

Switch X

Switch Z

Software-Defined Networking — Introduction 9

Introduction
Illustration

Data plane

Control plane

VM1 to VM3: W -> Z -> Y

VM2 to VM4: W -> X -> Y

Hypervisor 1

VM1

VM2

Hypervisor 2

VM3

VM4

Switch W Switch Y

Switch X

Switch Z

Software-Defined Networking — Introduction 10

Introduction
A more formal definition

Two requirements for SDN:

• A network in which the control plane is separate from the data plane

• A single control plane controls several forwarding devices

Both have to be met

Software-Defined Networking — Introduction 11

Introduction
SDN Benefits

Why the term “Software Defined”?

• The control plane is just software

Abstraction:

• No distributed state, one central view of the network

• Common model: "one big switch"-abstraction — the entire data plane behaves like a single giant switch

• No individual configuration of devices, one centrally managed control plane

• Important: View centralized, control plane itself may be implemented as a distributed system

Gain:

• Complex, distributed protocols such as the Spanning Tree Protocol (STP) are no longer necessary

• Simpler algorithms utilizing the central view (e.g., Dijkstra’s algorithm instead of STP)

• Less complexity in the control plane

Software-Defined Networking — Introduction 12

Software-Defined Networking

Introduction

OpenFlow

Introduction

Core concepts

Example

NFV

P4

Acknowledgements

Bibliography

Software-Defined Networking 13

Introduction
What is OpenFlow?

• OpenFlow is a protocol configuring the forwarding
plane

• runs on top of TCP/SSL
• Protocol spoken between control plane and for-

warding plane

• Standardized by the Open Networking Founda-
tion (ONF)

• Version 1.0 was released in 2009 [1]

• Latest version 1.6 from 2016 [2]

Data plane

Control plane

VM1 to VM3: W -> Z -> Y

VM2 to VM4: W -> X -> Y

Hypervisor 1

VM1

VM2

Hypervisor 2

VM3

VM4

Switch W Switch Y

Switch X

Switch Z

Openflow

Software-Defined Networking — OpenFlow 14

https://www.opennetworking.org/
https://www.opennetworking.org/

Core concepts
OpenFlow tables (i.e., SDN forwarding table)
OpenFlow is based on the match+action principleData(plane(abstraction:(Flow(table

Match Actions Counters

1. Forward((one(or(more(ports)
2. Drop
3. Encapsulate(and(send(to(controller
4. Header(rewrite
5. Push/pop(MPLS(label(/(VLAN(tag
6. Queues(+(bitrate(limiter((bit/s)
7. Etc..

Bytes(+(packets

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

L4
sport

L4
dport

VLAN
pcp

IP
ToS

Slide(courtesy:(Rob(Sherwood

A.(Capone:(ECOOP(6 NetPL(2015 9
Figure 1: Match+action principle of OpenFlow table entries (Source: cleanslate.stanford.edu)

Software-Defined Networking — OpenFlow 15

Core concepts
Tables examples

Switch MAC MAC Eth IP IP IP IP L4 L4 Action
Port Src Dst Type Src Dst TOS Prot Src Dst
* * 00:1f:... * * * * * * * Forward to Port 5

Table 1: Ethernet switch

Switch MAC MAC Eth IP IP IP IP L4 L4 Action
Port Src Dst Type Src Dst TOS Prot Src Dst
* * * * * 1.2.0.0/16 * * * * Rewrite Eth/IP headers + Forward to Port 5

Table 2: Router

Switch MAC MAC Eth IP IP IP IP L4 L4 Action
Port Src Dst Type Src Dst TOS Prot Src Dst
* * * * * * * * * 22 Drop

Table 3: Firewall

Software-Defined Networking — OpenFlow 16

Core concepts
Remark about the term switch

Traditional classification

• Switch:
• Works on Layer 2
• Simple forwarding of packets

• Router:
• Works on Layer 3
• Finding out where to route packets (LPM)

In the context of SDN every "box" is considered a switch

• Clear distinction (e.g. switch, router) no longer possible as functionality is determined by software

• These boxes/switches can even be used as firewall, tunnel gateways

Software-Defined Networking — OpenFlow 17

Core concepts
OpenFlow switch

OpenFlow Switch Specification Version 1.5.0

1 Introduction

This document describes the requirements of an OpenFlow Logical Switch. Additional information
describing OpenFlow and Software Defined Networking is available on the Open Networking Foundation
website (https://www.opennetworking.org/). This specification covers the components and the basic
functions of the switch, and the OpenFlow switch protocol to manage an OpenFlow switch from a
remote OpenFlow controller.

Port

Port

Port

Port

OpenFlow
Channel

Flow
Table

Flow
Table

Flow
Table

Controller

Pipeline

OpenFlow Switch

OpenFlow
Channel Group

Table
Meter
TableControl Channel

Controller

Datapath

Protocol

Figure 1: Main components of an OpenFlow switch.

2 Switch Components

An OpenFlow Logical Switch consists of one or more flow tables and a group table, which perform packet
lookups and forwarding, and one or more OpenFlow channels to an external controller (Figure 1). The
switch communicates with the controller and the controller manages the switch via the OpenFlow switch
protocol.

Using the OpenFlow switch protocol, the controller can add, update, and delete flow entries in flow
tables, both reactively (in response to packets) and proactively. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match fields, counters, and a set of instructions to apply
to matching packets (see 5.2).

Matching starts at the first flow table and may continue to additional flow tables of the pipeline (see
5.1). Flow entries match packets in priority order, with the first matching entry in each table being
used (see 5.3). If a matching entry is found, the instructions associated with the specific flow entry are
executed (see 5.5). If no match is found in a flow table, the outcome depends on configuration of the

11 © 2014; The Open Networking Foundation

Figure 2: OpenFlow switch (source: OpenFlow Switch Specification, ONF)

Software-Defined Networking — OpenFlow 18

Core concepts
Open vSwitch

Physical Switches & Crosslink Connections

. . .

Software Switch

VM

vNIC

VM

vNIC

VM

vNIC vNIC

VM

vNIC

pNIC pNIC pNIC

Figure 3: Virtual software switches [3]

• Open vSwitch (OvS) is a (virtual) software switch

• Supports OpenFlow (considered as the de-facto standard implementation of OpenFlow)

• OvS is typically used to connect different VMs on the same host or between different hosts

• OvS can also be used to turn a server with into an OpenFlow switch

Software-Defined Networking — OpenFlow 19

https://openvswitch.org

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

• add-flow: "OpenFlow rule" (Not a regular network flow!)

• ctl-if: Destination for this OpenFlow flow

• actions=controller: Send packets matching this rule to the controller

• priority=0: 0 is lowest priority

Software-Defined Networking — OpenFlow 20

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

• add-flow: "OpenFlow rule" (Not a regular network flow!)

• ctl-if: Destination for this OpenFlow flow

• actions=controller: Send packets matching this rule to the controller

• priority=0: 0 is lowest priority

Software-Defined Networking — OpenFlow 20

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

• Packet sent from Client 1 to Client 2

• Packet matches against rule Controller
• Controller instructs switch to send packet to destination
• Problem: sending each packet to the controller, may create a bottleneck / overload the controller

Software-Defined Networking — OpenFlow 21

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

• Packet sent from Client 1 to Client 2
• Packet matches against rule Controller

• Controller instructs switch to send packet to destination
• Problem: sending each packet to the controller, may create a bottleneck / overload the controller

Software-Defined Networking — OpenFlow 21

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

• Packet sent from Client 1 to Client 2
• Packet matches against rule Controller
• Controller instructs switch to send packet to destination

• Problem: sending each packet to the controller, may create a bottleneck / overload the controller

Software-Defined Networking — OpenFlow 21

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

• Packet sent from Client 1 to Client 2
• Packet matches against rule Controller
• Controller instructs switch to send packet to destination
• Problem: sending each packet to the controller, may create a bottleneck / overload the controller

Software-Defined Networking — OpenFlow 21

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

ovs-ofctl add-flow ctl-if dl_type=0x0800,nw_dst=10.0.0.2, priority=10000,actions=output:2

Software-Defined Networking — OpenFlow 21

Example

Client 1

10.0.0.1

Client 2

10.0.0.2OpenFlow
switch

1 2

ctl-if

Controller

Rules installed on the switch

ovs-ofctl add-flow ctl-if priority=0,actions=controller

ovs-ofctl add-flow ctl-if dl_type=0x0800,nw_dst=10.0.0.2, priority=10000,actions=output:2

• Controller can also install rule on switch to make forwarding more efficient

• IPv4 packets (matching ethertype 0x0800 destination address 10.0.0.2) from Client 1 get directly forwarded to Client 2

Software-Defined Networking — OpenFlow 21

Example
OpenFlow in the wild

• OpenFlow is not SDN

• OpenFlow with its standardized interface enables SDN deployment

• Very successful in software switches (Open vSwitch)

• There are hardware switches with OpenFlow support
• Did not make traditional switches obsolete as initially expected
• Still many proprietary switches today

OpenFlow

• Allows programming the control plane

• Allows modifications in the data plane

• Standard supports only a limited number of protocols
• To introduce new protocols the standard must be updated
• Switches must be upgraded to handle the new standard

Software-Defined Networking — OpenFlow 22

Software-Defined Networking

Introduction

OpenFlow

NFV

P4

Acknowledgements

Bibliography

Software-Defined Networking 23

NFV
Network Function Virtualization (NFV)

• Defined by ETSI (European Telecommunications Standards Institute)

• Telco-driven approach for networks initiated in 2012

• Definition of NFV according to ETSI: NFV is a concept "leveraging standard IT virtualisation technology to consolidate many network
equipment types onto industry standard high volume servers, switches and storage, which could be located in Datacentres, Network
Nodes and in the end user premises."

Software-Defined Networking — NFV 24

NFV
NFV—simply explained

Figure 4: from https://www.slideshare.net/nearyd/nfv-for-beginners

Software-Defined Networking — NFV 25

https://www.slideshare.net/nearyd/nfv-for-beginners

NFV
Some Terminology

• (V)NF: (Virtualized) Network Function, (virtualized) building block performing a network task

• NFC: Network Function Chaining, putting together several network functions to create more complex packet processing chains

VM1 VM2 VM3

NF1 NF 2 NF 3

Figure 5: Example of a chain of Virtual Network Functions

Software-Defined Networking — NFV 26

NFV
NFV vs. SDN

• "SDN and NFV are complementary but increasingly co-dependent" [4]

• SDN: dynamically control the network

• NFV: manage and orchestrate the virtualization of resources for the provisioning of network functions and their composition into
higher-layer network services

Software-Defined Networking — NFV 27

NFV
NFV architectures I

Traditional approach

• One VM per NF

• Communication between NFs via virtual switch

+ Strong isolation between NFs

+ Uses traditional OS sockets

- High load on virtual switch

VM1 VM2 VM3

NF1 NF 2 NF 3

Virtual switch

Figure 6: Traditional VM-based NFC

Non-virtualized NFC

• Entire NFC running directly on host system

• Communication between NFs via NF framework (e.g. DPDK)

+ No costs for virtual switch

- NFs need to be rewritten to use NF framework

NF framework

NF 1 NF 2 NF 3

Figure 7: Non-virtualized framework-based NFs

Software-Defined Networking — NFV 28

NFV
NFV architectures II

Hybrid solution: virtualized NFC

• One VM for entire NFC

• Communication between NFs via NF framework, initial entry and last
exit via virtual switch

+ Lower load on virtual switch

+ Isolation between host OS and the NF chain inside the VM

- NFs need to be rewritten to use NF framework

VM running NF framework

NF 1 NF 2 NF 3

Virtual switch

Figure 8: Virtualized framework-based NFs

Software-Defined Networking — NFV 29

NFV
Performance of NFs

• Tradeoff between isolation and performance requirements:
• Isolation (high to low): Virtual machines, container, no virtualization
• Performance (low to high): Virtual machines, container, no virtualization

Software-Defined Networking — NFV 30

NFV
Performance measurements

Performance of virtual switching solutions [3]

• Investigated 4 different setups involving physical/vir-
tual pNICs/vNICs

• CPU: Intel Xeon E3-1230 V2 CPU (3.3 GHz, base
clock)

• pNIC: 10 Gbit/s Intel X540

• SW: GRML Linux kernel v3.7, Open vSwich v2.0,
DPDK vSwitch v0.1

• Hypervisor: qemu-kvm 1.1.2

• Worst-case measurement scenario: minimum-sized
packets 64 B (14.88 Million packets per second
(Mpps) @ 10 Gbit/s)

Switch
pNIC pNICpNIC pNIC

(a) pNIC forwarding

VM

Switch

vNIC

pNIC

vNIC

pNIC

vNIC

pNIC

vNIC

pNIC

(b) pNIC to pNIC through VM

VM

Switch

vNIC

pNIC

(c) pNIC to vNIC

VMVM

Switch

vNIC vNIC vNIC

pNIC

vNIC vNIC vNIC

pNIC

(d) vNIC to vNIC

Figure 9: Investigated test setups

Software-Defined Networking — NFV 31

NFV

Table 4: Single Core Data Plane Performance Comparison

Million packets per second (Mpps) from pNIC to

Application pNIC vNIC vNIC to pNIC vNIC to vNIC

Linux bridge 1.11 0.74 0.20 0.19
IP forwarding 1.58 0.78 0.19 0.16
Open vSwitch (OvS) 1.88 0.85 0.30 0.27
DPDK vSwitch 13.51 2.45 1.10 1.00

• DPDK vSwitch is the DPDK-accelerated version of OvS

• Network IO for VMs is quite expensive

Software-Defined Networking — NFV 32

NFV
Conclusion

Traditional approach Virtualized NFC Non-virtualized NFC

Performance + ++ +++
Isolation +++ ++ +
Chaining interface OS sockets Framework-based Framework-based

Table 5: Comparison between different NFC architectures

Possible reasons for choosing different architectures

• Performance requirements

• Integration of legacy NF supporting only socket interface

• Integration of NFs from different vendors

• Stronger isolation requirements for untrusted customer code

Software-Defined Networking — NFV 33

Software-Defined Networking

Introduction

OpenFlow

NFV

P4

Motivation

P4 targets

P4 Core

P4 example: IPv4 router

Active area of research

Acknowledgements

Bibliography

Software-Defined Networking 34

Motivation
OpenFlow versus P4

OpenFlow

• OpenFlow allows programmability on the control plane

• OpenFlow offers a standardized interface to configure the data plane

• OpenFlow only supports protocols known by the hardware or software
used on the data plane

Management Plane

CLI

Control Plane

ARP IPv4

NewP

Data Plane

P4 Data Plane

ARP IPv4

E
NewP

OpenFlow

Software-Defined Networking — P4 35

Motivation
OpenFlow versus P4

OpenFlow

• OpenFlow allows programmability on the control plane

• OpenFlow offers a standardized interface to configure the data plane

• OpenFlow only supports protocols known by the hardware or software
used on the data plane

• Introducing a new protocol (e.g., NewP) fails without support from the
data plane

Management Plane

CLI

Control Plane

ARP IPv4 NewP

Data Plane

P4 Data Plane

ARP IPv4

E

NewP

OpenFlow

Software-Defined Networking — P4 35

Motivation
OpenFlow versus P4

OpenFlow

• OpenFlow allows programmability on the control plane

• OpenFlow offers a standardized interface to configure the data plane

• OpenFlow only supports protocols known by the hardware or software
used on the data plane

P4 (Programming Protocol-Independent Packet Processors)

• P4 is a domain specific programming language to program data plane
devices

• P4 allows programming switches to support entirely new protocols (e.g.,
NewP)

Management Plane

CLI

Control Plane

ARP IPv4 NewP

Data Plane

P4 Data Plane

ARP IPv4

E

NewP

OpenFlow

Software-Defined Networking — P4 35

Motivation
OpenFlow versus P4

OpenFlow

• OpenFlow allows programmability on the control plane

• OpenFlow offers a standardized interface to configure the data plane

• OpenFlow only supports protocols known by the hardware or software
used on the data plane

P4 (Programming Protocol-Independent Packet Processors)

• P4 is a domain specific programming language to program data plane
devices

• P4 allows programming switches to support entirely new protocols (e.g.,
NewP)

OpenFlow vs. P4

• P4 is not a successor or a replacement of OpenFlow

• OpenFlow and P4 solve specific tasks on separate planes

• P4 could be used to implement OpenFlow-capable applications for
switches (in practice OpenFlow is rarely used to configure P4)

Management Plane

CLI

Control Plane

ARP IPv4 NewP

Data Plane

P4 Data Plane

ARP IPv4

E

NewP

OpenFlow

Software-Defined Networking — P4 35

Motivation
Data plane programmability

Goal: program your own data plane!

Benefits:

• Control and customization: make the device behave exactly as you want, operators can hide internal protocols

• Reliability: include only the features you need

• Efficiency: reduce energy consumption and expand scale by doing only what you need

• Update: Add new features when you want

• Telemetry: See inside the data plane

• Exclusivity: Program your own features without the need for involving a chip vendor

• Rapid Prototyping: enables fast deployment of protocols for prototyping

• Fast Development Cycles: enables software upgrades for protocols

Challenges:

• Performance: data planes need to process millions of packets per second

• Flexibility: Enable the implementation of various protocols

• Hardware independence: keep the description high-level enough

Software-Defined Networking — P4 36

Motivation
Data plane programmability

Goal: program your own data plane!

Benefits:

• Control and customization: make the device behave exactly as you want, operators can hide internal protocols

• Reliability: include only the features you need

• Efficiency: reduce energy consumption and expand scale by doing only what you need

• Update: Add new features when you want

• Telemetry: See inside the data plane

• Exclusivity: Program your own features without the need for involving a chip vendor

• Rapid Prototyping: enables fast deployment of protocols for prototyping

• Fast Development Cycles: enables software upgrades for protocols

Challenges:

• Performance: data planes need to process millions of packets per second

• Flexibility: Enable the implementation of various protocols

• Hardware independence: keep the description high-level enough

Software-Defined Networking — P4 36

Motivation
Meet P4

An open source language allowing the specification of packet processing logic

Based on a Match+Action forwarding model

Multiple platforms supported:

• Software-based solution (e.g., using DPDK)

• NPUs - Network Processor Units

• FPGAs - Field Programmable Gate Arrays

• P4-specific ASICs

Software-Defined Networking — P4 37

P4 targets
Software targets

p4c/bmv2

• open source, available at https://p4.org/code/

• "official" P4 reference implementation developed by p4.org

• used for teaching, testing, trying out new features

• no specific hardware required (mininet)

• slow, not optimized for performance

T4P4S (called tapas)

• open source, available at http://p4.elte.hu/

• compiles P4 for DPDK

• requires DPDK-compatible hardware

• decent performance (>10 Gbit/s)

P4TC

• open source, available at https://www.p4tc.dev/

• ongoing effort to bring P4 to the Linux kernel

• based on existing Linux modules (traffic control/TC)

• bringing P4 to end hosts

Software-Defined Networking — P4 38

https://p4.org/code/
http://p4.elte.hu/
https://www.p4tc.dev/

P4 targets
Network Processor Unit (NPU)

Netronome Agilio SmartNIC

• purpose-built processor for packet process-
ing

• specialized hardware accelerators (e.g.
hashing, look up)

• highly parallelized architecture (>100 cores)

• supports several programming languages C,
P4, eBPF

• up to 2 × 100 Gbit/s interfaces per network
card

PRODUCT BRIEF

Netronome NFP-4000 Flow Processor
PURPOSE-BUILT PROCESSORS FOR INTELLIGENT NETWORKING

Netronome’s 6th generation NFP-4000 multi-threaded, multicore flow processor
targets intelligent data plane processing at higher performance, with lowest power
and cost, while enabling the capability to adapt quickly to new networking features.
The optimized match/action-based flow processing architecture enables per tenant,
per VM, per application policies at scale to support microsegmentation. In security
applications, the built-in, high-performance bulk cryptography acceleration delivers
secure data access at cloud scale.

PCIe Gen3 2x8

2x40GbE
10x10GbE

2x32-bit
DDR3

PCIe Gen3 2x8

Programmable Cores Adaptive Memory Controller

Proximity Memory

Function Accelerators

Network Interface

SR-IOV

MAC

Hash

Crypto

Traffic
Manager

Queue

Statistics

Packet
Modifier

Atomic

Reorder

Load
BalancerSerDes

RX/TX DMA Cache and Dedicated Mode

Tunneling Offload

OVS Match/Action

LSO/LRO

RSS/RsC

PF/VFs DMA QUEUE

FEATURES
�� 60 programmable flow
processing cores

�� 48 packet processing cores

�� PCIe Gen3 2x8 interface
(2PF/64VF each)

�� SR-IOV with 256 hardware
queues

�� Adaptive buffer management

�� Configurable 2x32-bit or 1x64-
bit ECC protected DDR3-1866

�� Over 19MB of on-chip memory

�� 10 KR capable SerDes
supporting:
�− Ethernet - 10Gb/40Gb/100Gb
�− Interlaken - up to 100Gb

�� Hardware-based, in-line bulk
cryptography support for all
major cypher suites

�� 60+ dedicated accelerators for
Deep Packet Inspection (DPI)

�� Traffic management,
security processing and bulk
cryptography

�� Arm11 Core (L1 (64K), L2
(256K))

Arm11 Core
Accelerators

Crypto

Look-up

Statistics

Load Balancer

Queue

CAM

Atomic

Bulk

Hash

I/O
Internal Fabric 9.6Tb/s Proximity Memory

Pre-Classifier

Packet Modifier Traffic Manager

48
Packet Processing

Cores

60
Flow Processing

Cores

10x10GbE
2x40GbE

ILKN
ILKN-LA

256K L2 Cache
64K I Cache
64K D Cache

2x8
PCIe Gen3

SR-IOV

Adaptive Memory
Controller

(2x32bit DDR3)

NFP-4000 Flow Processor Block DiagramNFP-4000 architecture [source: netronome.com]

Netronome SmartNIC [source: colfaxdirect.com]
Software-Defined Networking — P4 39

https://www.netronome.com/media/documents/PB_NFP-4000.pdf
http://www.colfaxdirect.com/store/pc/showsearchresults.asp?IDBrand=38

P4 targets
Field Programmable Gate Array (FPGA)

NetFPGA

• fully programmable NIC (down to the physical
layer)

• utilizing hardware description languages
such as Verilog or VHDL

• Xilinx Virtex 7 FPGA

• up to 4 × 10 Gbit/s interfaces (via SFP+
transceivers)

NetFPGA Sume [source: github.com/NetFPGA]

Software-Defined Networking — P4 40

https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/Getting-Started-Guide

P4 targets
P4-specific ASICs

Barefoot Tofino 2

• Tofino ASIC: specifically designed switching ASIC with native
P4 support

• capable of up to 12 Tbit/s throughput (unidirectional)

• for comparison: peak traffic at biggest Internet exchange DE-
CIX in Frankfurt was 15 Tbit/s in 2023a

• up to 64 × 200 Gbit/s interfaces (via QSFP56 transceivers)

a
https://www.de-cix.net/en/about-de-cix/media/press-releases/europes-largest-internet-exchange-de-cix-frankfurt-sets-new-traffic-record-15-terabits-per-second,

last accessed 2023-01-03

32 / 64-port switch [source: arista.com]

Software-Defined Networking — P4 41

https://www.de-cix.net/en/about-de-cix/media/press-releases/europes-largest-internet-exchange-de-cix-frankfurt-sets-new-traffic-record-15-terabits-per-second
https://www.arista.com/en/products/7170-series-network-switch-datasheet

P4 targets
Target comparison

SW NPU FPGA ASIC

Performance + ++ ++ +++
Flexibility +++ ++ ++ +
Ease of use +++ + + +
Costs 0 C > 500 C > 1000 C > 10 000 C

Did P4 achieve its goals?

• Performance: data planes need to process millions of packets per second : accomplished✓
• Flexibility: Enable the implementation of various protocols : accomplished✓
• Hardware independence: keep the description high-level enough : development ongoing . . .

• Basic P4 functionality can be realized on any target
• Every target offers different additional capabilities not programmed in P4 (e.g. multicast support)
• These additional functionalities make P4 programs hardware dependent

Software-Defined Networking — P4 42

P4 targets
Target comparison

SW NPU FPGA ASIC

Performance + ++ ++ +++
Flexibility +++ ++ ++ +
Ease of use +++ + + +
Costs 0 C > 500 C > 1000 C > 10 000 C

Did P4 achieve its goals?

• Performance: data planes need to process millions of packets per second : accomplished✓
• Flexibility: Enable the implementation of various protocols : accomplished✓
• Hardware independence: keep the description high-level enough : development ongoing . . .

• Basic P4 functionality can be realized on any target
• Every target offers different additional capabilities not programmed in P4 (e.g. multicast support)
• These additional functionalities make P4 programs hardware dependent

Software-Defined Networking — P4 42

P4 targets
Organization

P4 open source efforts are centralized on:

• Official website: https://p4.org

• Github: https://github.com/p4lang

P4 consortium members

Copyright © 2017 – P4.org

Systems

P4.org Membership

Academia/
Research

Targets

Operators/
End Users

Original P4 Paper Authors:

• Open source, evolving, domain-specific language
• Permissive Apache license, code on GitHub today

• Membership is free: contributions are welcome
• Independent, set up as a California nonprofit

Solutions/
Services

Software-Defined Networking — P4 43

https://p4.org
https://github.com/p4lang

P4 Core
P4 versions

Two versions available:

• P414, released in March, 2015
• unified language for all targets
• development driven by hardware developers

• P416, released in May, 2017
• concentrating P4 language on core functionalities
• development driven by software developers (P4 becoming a more C-like programming language)

Copyright © 2017 – P4.org

P4 Language Tutorial
Figure 10: P4 logo

Note: the following slides are based on the P4 tutorial from P4.org

Software-Defined Networking — P4 44

P4 Core
Overview

Copyright © 2017 – P4.org

V1Model Architecture

4

• Implemented on top of Bmv2’s simple_switch target

Traffic
Manager

DeparserChecksum Verification /
Ingress Match-Action

Parser Checksum Update /
Egress Match-Action

Figure 11: P4 model architecture

Software-Defined Networking — P4 45

P4 Core
Different switch models

Copyright © 2017 – P4.org

V1Model Architecture

4

• Implemented on top of Bmv2’s simple_switch target

Traffic
Manager

DeparserChecksum Verification /
Ingress Match-Action

Parser Checksum Update /
Egress Match-Action

Figure 12: P4 model architecture

Figure 13: P4 model architecture without traffic manager

Figure 14: P4 model architecture without traffic manager and egress stages

• P4 models present the capabilities of a P4-enabled device

• Models typically reflect the different features of different P4 targets

Software-Defined Networking — P4 46

P4 Core
Parser

Parser tasks

• Finite State Machine (FSM)

• Produces a parsed representation of valid headers

• Describes all supported headers

• Describes the order in which headers may appear

Deparser tasks

• Executed before sending a frame

• Assemble the different fields and their order in a frame

57©2016 Open-NFP

Parser
Function produces a parsed
representation that lists valid headers

Function that describes all supported
header stacks

All other packets default
• Undefined header types
• Undefined header stacks
• Undefined field values

Complex parsers possible (e.g. parser
value sets), beyond the scope of this
tutorial

Example from the p4 1.1 specAbstract representation of a packet parser [source: open-nfp.org]

Software-Defined Networking — P4 47

https://open-nfp.org/m/documents/iee_nfv_conference_p4tutorial_SRFpcZX.pdf

P4 Core
Metadata

Tasks

• Data structures associated with every packet

• Standard metadata:
• Default metadata provided by all P4 targets for every packet
• e.g. ingress_port

• Intrinsic metadata:
• Additional target-specific metadata provided for every packet
• e.g. receive_timestamp

• User-defined metadata
• Data created by the P4 program during runtime for every packet
• e.g. new_tunnel_id

Software-Defined Networking — P4 48

P4 Core
Match tables

name field match_kind match_value action action data

[0] encap ingress_port exact port_0 encapsulate_act vlantag = 123

[1] default drop

Example table

Tasks

• Each table contains one or more entries

• An entry contains a specific key to match on (field) and a single action (action) to be executed, and additional data (action data)

• The match operation supports different types (match_kind):
• exact: select the entry exactly matching match_value
• lpm: select the entry with the longest prefix matching
• ternary: select with some ignored bits e.g. match_value of 10*1 → 1011 or 1001

• P4 targets may define additional match types, e.g. range

• If no entry matches, the mandatory default entry is selected

Software-Defined Networking — P4 49

P4 Core
Actions & extern objects

Tasks

• Similar to C functions without any loops or pointers

• Modification of field values and headers (add or remove)

• Besides the packet/header data, the action also may get additional data from tables

• Primitives for metering, registers, counters, hashes and random numbers

Extern objects

• New in P416

• Externs perform additional tasks which are either not written in or not supported by P4

• Architecture specific:
• Software/NPU targets: extension via programmed functions (C, Python, . . .)
• FPGA: extension via VHDL/Verilog-defined functions
• ASIC: no extension possible

Software-Defined Networking — P4 50

P4 Core
Match-Action Processing

Illustration of P4 match-action process [source: p4.org]

Software-Defined Networking — P4 51

https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html

P4 Core
P4 Portable Switch Architecture (PSA)

Goal:

• Reference architecture for P4 switches

• Separate PSA specification available on p4.org

• Architecture describes common capabilities of network switch devices

Common capabilities

• Metadata definitions

• Hashes and checksums (only simple hashes e.g. CRC, no cryptographic hashes such as SHA)

• Counters and meters

• Registers

• Random number generators

• Access to timestamps

Example for non-common capabilities

• Capabilities of the traffic manager, such as packet generation

Software-Defined Networking — P4 52

https://p4.org/specs/

P4 example: IPv4 router

Disclaimer

• Basic P4 example

• Essential features are missing, no ARP/ICMP/VLAN/IPv6 handling

→ do not use this router for the project ;)

Software-Defined Networking — P4 53

P4 example: IPv4 router
Headers and fields definition

typedef b i t <48> macAddr_t ;
typedef b i t <32> ip4Addr_t ;

bit<n> defines unsigned int of length n
typedef introduces a shorter label for field declarations

header e the rne t_ t {
macAddr_t dstAddr ;
macAddr_t srcAddr ;
b i t <16> ethpersType ;

}

header declares a new header. The following operations can be called on a
header: isValid(), setValid(), and setInvalid().

What about the frame check sequence?
→ Checked and added automatically

header ipv4_ t {
b i t <4> vers ion ;
b i t <4> i h l ;
b i t <8> d i f f s e r v ;
b i t <16> to ta l Len ;
b i t <16> i d e n t i f i c a t i o n ;
b i t <16> f l a g s f r a g O f f s e t ;
b i t <8> t t l ;
b i t <8> p ro toco l ;
b i t <16> hdrChecksum ;
ip4Addr_t srcAddr ;
ip4Addr_t dstAddr ;

}

Offset

0 B

4 B

8 B

12 B

16 B

20 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options / Padding (optional)

IPv4 header

Software-Defined Networking — P4 54

P4 example: IPv4 router
Headers and fields definition

typedef b i t <48> macAddr_t ;
typedef b i t <32> ip4Addr_t ;

bit<n> defines unsigned int of length n
typedef introduces a shorter label for field declarations

header e the rne t_ t {
macAddr_t dstAddr ;
macAddr_t srcAddr ;
b i t <16> ethpersType ;

}

header declares a new header. The following operations can be called on a
header: isValid(), setValid(), and setInvalid().

What about the frame check sequence?

→ Checked and added automatically

header ipv4_ t {
b i t <4> vers ion ;
b i t <4> i h l ;
b i t <8> d i f f s e r v ;
b i t <16> to ta l Len ;
b i t <16> i d e n t i f i c a t i o n ;
b i t <16> f l a g s f r a g O f f s e t ;
b i t <8> t t l ;
b i t <8> p ro toco l ;
b i t <16> hdrChecksum ;
ip4Addr_t srcAddr ;
ip4Addr_t dstAddr ;

}

Offset

0 B

4 B

8 B

12 B

16 B

20 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options / Padding (optional)

IPv4 header

Software-Defined Networking — P4 54

P4 example: IPv4 router
Headers and fields definition

typedef b i t <48> macAddr_t ;
typedef b i t <32> ip4Addr_t ;

bit<n> defines unsigned int of length n
typedef introduces a shorter label for field declarations

header e the rne t_ t {
macAddr_t dstAddr ;
macAddr_t srcAddr ;
b i t <16> ethpersType ;

}

header declares a new header. The following operations can be called on a
header: isValid(), setValid(), and setInvalid().

What about the frame check sequence?
→ Checked and added automatically

header ipv4_ t {
b i t <4> vers ion ;
b i t <4> i h l ;
b i t <8> d i f f s e r v ;
b i t <16> to ta l Len ;
b i t <16> i d e n t i f i c a t i o n ;
b i t <16> f l a g s f r a g O f f s e t ;
b i t <8> t t l ;
b i t <8> p ro toco l ;
b i t <16> hdrChecksum ;
ip4Addr_t srcAddr ;
ip4Addr_t dstAddr ;

}

Offset

0 B

4 B

8 B

12 B

16 B

20 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options / Padding (optional)

IPv4 header

Software-Defined Networking — P4 54

P4 example: IPv4 router
Headers and fields definition

typedef b i t <48> macAddr_t ;
typedef b i t <32> ip4Addr_t ;

bit<n> defines unsigned int of length n
typedef introduces a shorter label for field declarations

header e the rne t_ t {
macAddr_t dstAddr ;
macAddr_t srcAddr ;
b i t <16> ethpersType ;

}

header declares a new header. The following operations can be called on a
header: isValid(), setValid(), and setInvalid().

What about the frame check sequence?
→ Checked and added automatically

header ipv4_ t {
b i t <4> vers ion ;
b i t <4> i h l ;
b i t <8> d i f f s e r v ;
b i t <16> to ta l Len ;
b i t <16> i d e n t i f i c a t i o n ;
b i t <16> f l a g s f r a g O f f s e t ;
b i t <8> t t l ;
b i t <8> p ro toco l ;
b i t <16> hdrChecksum ;
ip4Addr_t srcAddr ;
ip4Addr_t dstAddr ;

}

Offset

0 B

4 B

8 B

12 B

16 B

20 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options / Padding (optional)

IPv4 header

Software-Defined Networking — P4 54

P4 example: IPv4 router
Metadata definition

/ * A r c h i t e c t u r e * /
s t r u c t standard_metadata_t {

b i t <9> ing ress_por t ;
b i t <9> egress_spec ;
b i t <9> egress_por t ;
b i t <32> clone_spec ;
b i t <32> ins tance_type ;
b i t <1> drop ;
b i t <16> r e c i r c u l a t e _ p o r t ;
b i t <32> packet_ length ;
. . .

}

/ * User program * /
s t r u c t metadata {

. . .
}

s t r u c t headers {
e the rne t_ t e therne t ;
i pv4_ t ipv4 ;

}

struct defines an unsorted collection of members

Software-Defined Networking — P4 55

P4 example: IPv4 router
P416 Parsers

• Parsers map packets to headers and metadata

• Parsers are written as state machines

• Each parser has three predefined stats:
• start

• accept

• reject

• Additional states may be defined by the programmer

• Each state may execute statements and then transition to an-
other state

• Loops are allowed

Copyright © 2017 – P4.org

P416 Parsers

• Parsers are functions that map packets
into headers and metadata, written in a
state machine style
• Every parser has three predefined states
◦ start
◦ accept
◦ reject
• Other states may be defined by the

programmer
• In each state, execute zero or more

statements, and then transition to
another state (loops are OK)

26

start

accept reject

Software-Defined Networking — P4 56

P4 example: IPv4 router
Parser definition

parser MyParser (packet_ in packet ,
out headers hdr ,
i nou t metadata meta ,
i nou t standard_metadata_t std_meta) {

s t a t e s t a r t {
t r a n s i t i o n parse_ethernet ;

}

s t a t e parse_ethernet {
packet . e x t r a c t (hdr . e therne t) ;
t r a n s i t i o n s e l e c t (hdr . e therne t . ethType) {

TYPE_IPV4 : parse_ipv4 ; / / 0x800
d e f a u l t : accept ;

}
}

s t a t e parse_ipv4 {
packet . e x t r a c t (hdr . ipv4) ;
t r a n s i t i o n accept ;

}
}

MyParser

packet

meta

std_meta

hdr

meta

std_meta

select works similar to case statements in
Java/C

select ends after successful match (default is
not executed after successful TYPE_IPV4 match)

extract set header and its fields to valid

Software-Defined Networking — P4 57

P4 example: IPv4 router
Ingress and table definition

c o n t r o l MyIngress (i nou t headers hdr ,
i nou t metadata meta ,
i nou t standard_metadata_t std_meta) {

ac t i on drop () { mark_to_drop () ; }

ac t i on ipv4_forward (macAddr_t dstAddr , egressSpec_t po r t) {
standard_metadata . egress_spec = po r t ;
hdr . e therne t . srcAddr = hdr . e therne t . dstAddr ;
hdr . e therne t . dstAddr = dstAddr ;
hdr . ipv4 . t t l = hdr . ipv4 . t t l − 1 ;

}

t ab l e ipv4_lpm {
key = { hdr . ipv4 . dstAddr : lpm ; }
ac t i ons = { ipv4_forward ; drop ; NoAction ; }
s i ze = 1024;
d e f a u l t _ a c t i o n = NoAction () ;

}

apply {
i f (hdr . ipv4 . i s V a l i d ()) { ipv4_lpm . apply () ; }

}
}

A control block contains the functionality
of the program

Control blocks can represent different
kinds of processing:

• Match-Action pipelines

• Deparsers

• Additional forms of processing
(checksums)

Typically headers and metadata act as
interfaces between control blocks

Execution starts with apply() statement

Software-Defined Networking — P4 58

P4 example: IPv4 router
IPv4 Table example

field match_kind key action action data
[0] hdr.ipv4.dstAddr lpm 10.0.1.1/32 ipv4_forward dstAddr=00:00:00:00:01:01,

port=1

[1] hdr.ipv4.dstAddr lpm 10.0.1.2/32 drop

[2] - - - NoAction

Software-Defined Networking — P4 59

P4 example: IPv4 router
Checksum verification
c o n t r o l MyVerifyChecksum (i nou t headers hdr , i nou t metadata meta) {

apply {
ver i fy_checksum (

hdr . ipv4 . i s V a l i d () , / / check v a l i d i t y o f header
{ / / l i s t o f i npu ts

hdr . ipv4 . vers ion ,
hdr . ipv4 . i h l ,
hdr . ipv4 . d i f f s e r v ,
hdr . ipv4 . to ta lLen ,
hdr . ipv4 . i d e n t i f i c a t i o n ,
hdr . ipv4 . f l ags ,
hdr . ipv4 . f r agOf f se t ,
hdr . ipv4 . t t l ,
hdr . ipv4 . p ro toco l ,
hdr . ipv4 . srcAddr ,
hdr . ipv4 . dstAddr

} ,
hdr . ipv4 . hdrChecksum , / / ou tput
HashAlgorithm . csum16 / / hash c a l c u l a t i o n

) ;
}

}

Software-Defined Networking — P4 60

P4 example: IPv4 router
Checksum calculation
c o n t r o l MyComputeChecksum(i nou t headers hdr , i nou t metadata meta) {

apply {
update_checksum (

hdr . ipv4 . i s V a l i d () , / / check v a l i d i t y o f header
{ / / l i s t o f i npu ts

hdr . ipv4 . vers ion ,
hdr . ipv4 . i h l ,
hdr . ipv4 . d i f f s e r v ,
hdr . ipv4 . to ta lLen ,
hdr . ipv4 . i d e n t i f i c a t i o n ,
hdr . ipv4 . f l ags ,
hdr . ipv4 . f r agOf f se t ,
hdr . ipv4 . t t l ,
hdr . ipv4 . p ro toco l ,
hdr . ipv4 . srcAddr ,
hdr . ipv4 . dstAddr

} ,
hdr . ipv4 . hdrChecksum , / / ou tput
HashAlgorithm . csum16 / / hash c a l c u l a t i o n

) ;
}

}

Software-Defined Networking — P4 61

P4 example: IPv4 router
Egress, deparser and switch definition
c o n t r o l MyEgress (i nou t headers hdr ,

i nou t metadata meta ,
i nou t standard_metadata_t std_meta) {

apply { }
}

/ / no e x p l i c i t deparser ob jec t => c o n t r o l
c o n t r o l MyDeparser (packet_out packet , i n headers hdr) {

apply {
packet . emit (hdr . e therne t) ;
packet . emit (hdr . ipv4) ;

}
}

Router (
MyParser () ,
MyVerifyChecksum () ,
MyIngress () ,
MyEgress () ,
MyComputeChecksum () ,
MyDeparser ()

) main ;

Software-Defined Networking — P4 62

Active area of research

P4, like OpenFlow, has attracted a lot of researchers

• Extension of the P4 language itself

• Proposition of new platforms supporting P4

• New protocols and services on top of P4

• Other open programming languages for common network functionalities (e.g., packet scheduling)

• . . .

Theses offered at the chair

• P4 benchmarking

• P4 extensions

• . . .

Software-Defined Networking — P4 63

Software-Defined Networking

Introduction

OpenFlow

NFV

P4

Acknowledgements

Bibliography

Software-Defined Networking 64

Acknowledgements

• Slides partially based on work by Cornelius Diekmann

Software-Defined Networking — Acknowledgements 65

Software-Defined Networking

Introduction

OpenFlow

NFV

P4

Acknowledgements

Bibliography

Software-Defined Networking 66

Software-Defined Networking

[1] O. N. Foundation, “Openflow switch specification, version 1.0.0,”, 2009.

[2] O. N. Foundation, “Openflow switch specification, version 1.6,”, 2016.

[3] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle, “Throughput and Latency of Virtual Switching with Open vSwitch:
A Quantitative Analysis,” in Journal of Network and Systems Management, Jul. 2017. DOI: 10.1007/s10922-017-9417-0.

[4] ETSI, Network function virtualisation, last accessed: 2019-11-24, 2012. [Online]. Available: https://www.etsi.org/technologies/nfv.

Software-Defined Networking 67

https://doi.org/10.1007/s10922-017-9417-0
https://www.etsi.org/technologies/nfv

	Software-Defined Networking
	Introduction
	OpenFlow
	Introduction
	Core concepts
	Example

	NFV
	P4
	Motivation
	P4 targets
	P4 Core
	P4 example: IPv4 router
	Active area of research

	Acknowledgements
	Bibliography

