

Reproducible Research for Networked Systems

Georg Carle
Sebastian Gallenmüller

{carle|gallenmu}@net.in.tum.de
http://www.net.in.tum.de/{~carle|~gallenmu}

Acknowledgements:
All members of the Chair of
Network Architectures and Services

Outline

Needs

- Scalable, Resilient and Trustworthy Programmable Networked Systems with Predictable Performance
- Research Infrastructure for Reproducible Experiments

Challenges

Approach

Framework, Methods and Tools for Reproducible Experiments

Conclusions

Scalable, Resilient and Trustworthy Programmable Networked Systems

Need for Resilient Low-Latency Predictable Network Services

Challenges

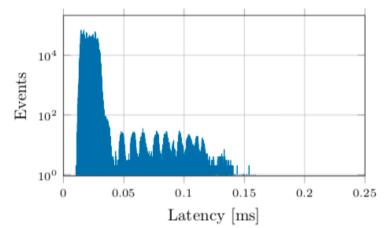
- complex architectures
- performance, safety and security requirements
- ⇒ Need for
- Secure communication, trustworthy implementation
- Network stack + applications: worst case performance guarantees
- Scalability, flexibility, affordability, time-to-market

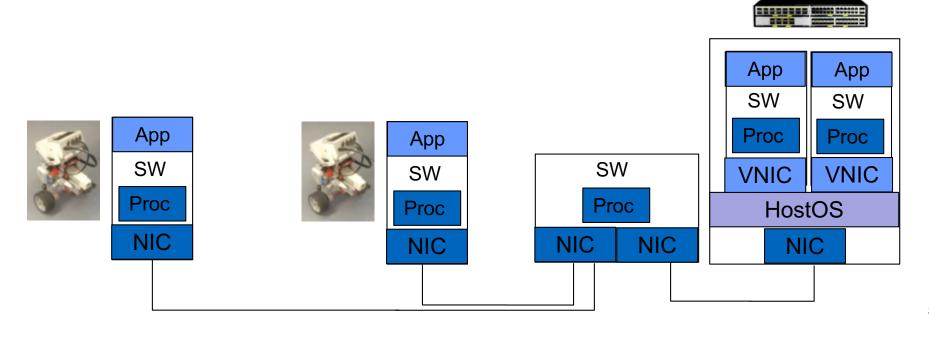
Low-Latency Systems:

Network-Controlled Robot

Power Grid Control

Need: End-to-End Worst-Case Latency Guarantees

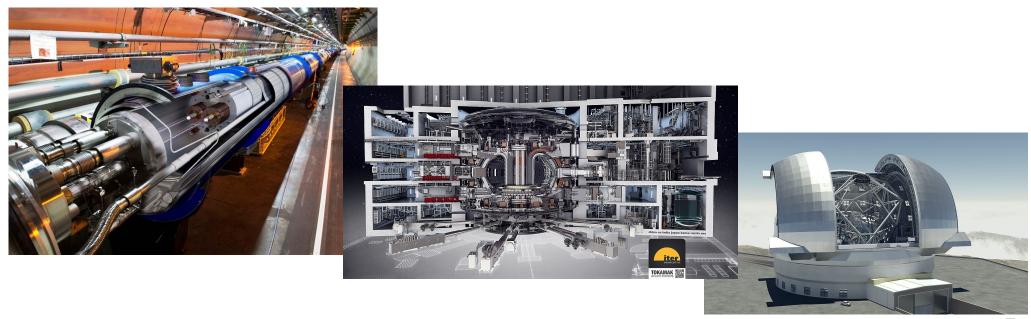



Goal:

Predictable performance of networked systems

Challenges:

- Complex Hardware + Software
- Programmability
- Issue: latency distribution (long tail)


Goal:

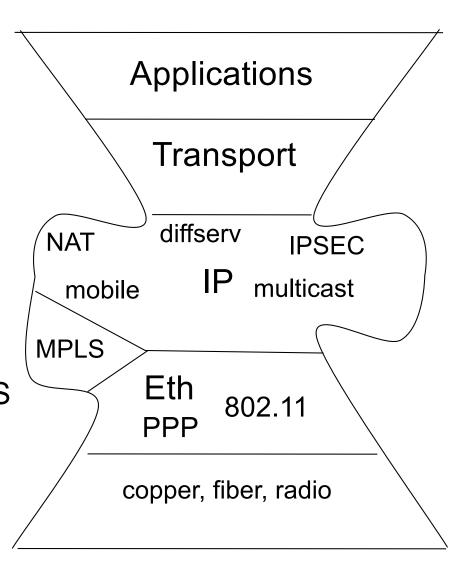
Research Infrastructure for Networked Systems

Natural Sciences Research infrastructures

- Large-scale research infrastructures have become a necessity to answer current research questions
- Long-term funding programs allow the creation of infrastructures
 - Large Hadron Collider
 - Fusion Reactor ITER
 - Extremely Large Telescope
- Which is the right research infrastructure for Computer Science?

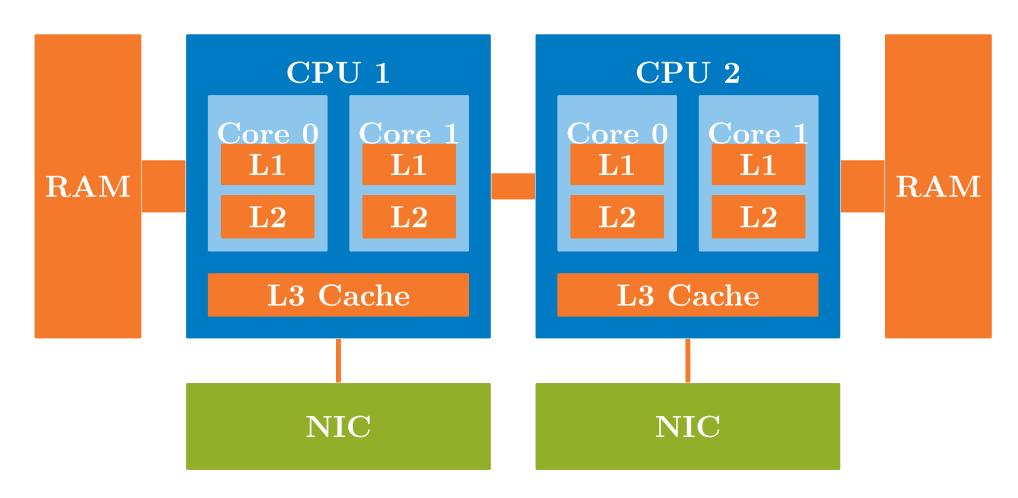
Challenge: Complexity

Complexity of Protocol Stack
Complexity by Programmability
Complexity by Processing Architecture
Complexity by Software Architecture

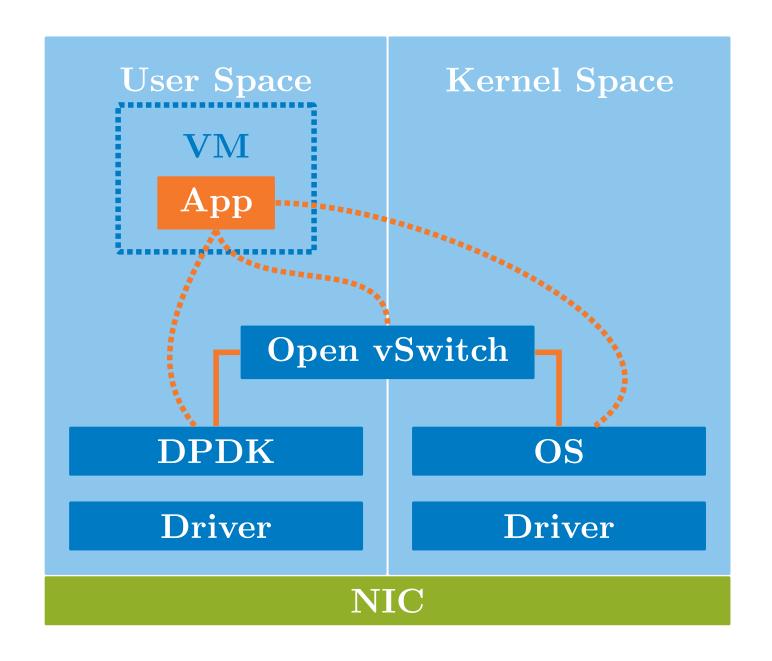

Latency Guarantees

Reproducible Experiments

Protocol Stacks are Complex


- TLS, QUIC, MASQUE
- TCP, UDP
- BGP, OSPF, VRRP, PIM
- IPsec, IKE, EAP
- IPv4, IPv6, Segment Routing
- VLAN, GTP, IP in IP, GRE, MPLS

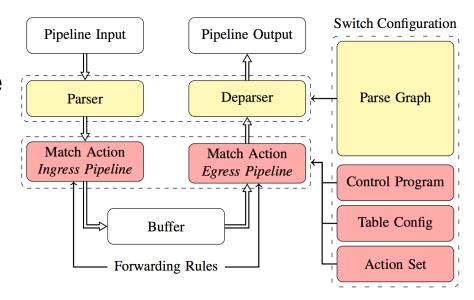
Modern Hardware Architectures are Complex



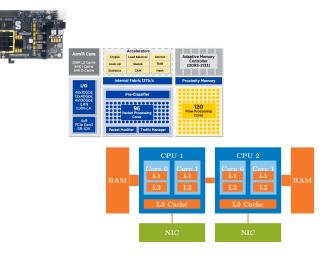
Non-Uniform Memory Architecture (NUMA)

Modern Software Architectures are Complex

Programmable NICs add Complexity


Programmable packet processing architectures **Example: Netronome SmartNIC** Multicore with NFP-6000 Flow Processor, **CPUs** Optics NETRONUME (cf. www.netronome.com) 20x10G **NICs** 4x40G Flow Processor 2x100G NFP-6000 Composable IP blocks PCle3 4x8 Accelerators **Arm11 Core Adaptive Memory** Load Balancer Crypto Atomic Controller 256K L2 Cache Bulk Look-up Queue (DDR3-2133) 64K I Cache 64K D Cache CAM Statistics Hash Internal Fabric 12Tb/s **Proximity Memory** 1/0 48x10GbE **Pre-Classifier** 12x40GbE 4x100GbE **ILKN** 120 96 **ILKN-LA** Flow Processing Packet Processing Cores Cores 4x8 PCle Gen3 SR-IOV **Packet Modifier Traffic Manager**

P4 Programmable Packet Processing adds Complexity


P4 Architecture

Programmable High-Performance Packet Processing

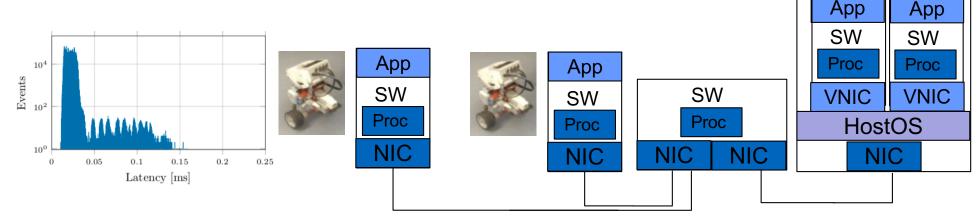
P4 on different processing targets

- Tofino ASIC-based switch
- P4NetFPGA
- P4 Programming of SmartNIC
- P4 Programming of CPUs (t4p4s DPDK)

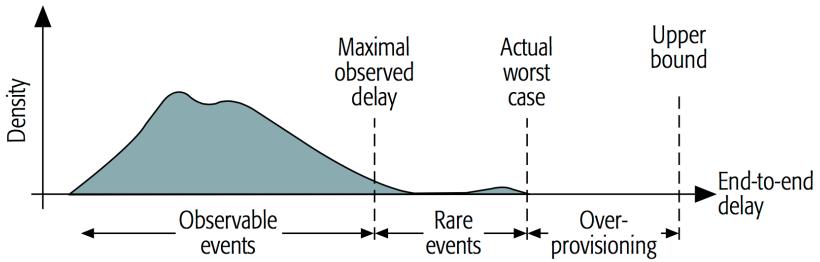
P4 Programmable Network Devices

Comparison of P4 Programmable Target Types

	CPU	NPU	FPGA	ASIC
Throughput	+	++	+++	++++
Latency	$>$ 10 μs	5 μs to 10 μs	$<$ 2 μs	$<$ 2 μs
Jitter				_
Resources	++++	+++	++	+
Flexibility	++++	+++	++	+
Example	t4p4s DPDK	NFP-4000 SmartNIC	NetFPGA SUME	Intel Tofino


[ITC2020] Dominik Scholz, Henning Stubbe, Sebastian Gallenmüller, Georg Carle, "Key Properties of Programmable Data Plane Targets," in 32nd International Teletraffic Congress (ITC 32), Osaka, Japan, Sep. 2020

Digital Sovereignty Contribution: High-performance low-latency systems Programmable with P4, realized using multiple target types, from different vendors


Challenge: Providing Latency Guarantees

Networked system with programmable network components:

Maximal observed delay vs. upper bound:

[CommsMag] Fabien Geyer, Georg Carle: Network engineering for real-time networks: Comparison of automotive and aeronautic industries approaches, IEEE Communications Magazine 54 (2), 2016

Reproducible Experiments

Viewpoints on Reproducible Research

ACM SIGCOMM MoMeTools - Workshop on Models, Methods and Tools for Reproducible Network Research

Georg Carle, Hartmut Ritter, Klaus Wehrle, Karlsruhe, Germany, August 2003

ACM SIGCOMM Reproducibility Workshop

Olivier Bonaventure, Luigi Iannone, Damien Saucez Los Angeles, USA, August 2017

[Rep17] Q. Scheitle, M. Wählisch, O. Gasser, T. Schmidt, G. Carle, Towards an ecosystem for reproducible research in computer networking Proceedings of the ACM SIGCOMM Reproducibility Workshop, 2017

<u>Dagstuhl</u> seminar 18412 "Encouraging Reproducibility in Scientific Research of the Internet", October 2018

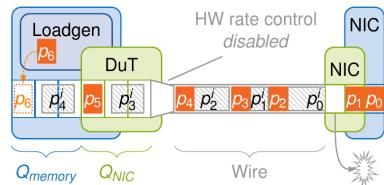
- Despite 20 years since first workshop have passed, hard problems remain
- Current approaches
 - Artifact evaluation committees
 - Reproducibility <u>badges</u>
- Remaining problems
 - High effort for researchers to make research reproducible
 - High effort for members of artifact evaluation committee to validate reproducibility
 - Low robustness of experimental results due to insufficient documentation

Hardware Traffic Generators

- Fast
- Precise

but

- Expensive
- Difficult to deploy
- Inflexible



Spirent traffic generator

MoonGen

- Inexpensive: Commercial Off-The-Shelf hardware
- Fast: DPDK for packet I/O, multi-core support
- Easy to deploy: simple software setup
- Flexible: user-controlled Lua scripts
- Precise
 - Timestamping: Utilize hardware features of commodity NICs
 - Rate control: Hardware features and software approach
 - Inter-packet spacing: gaps filled with invalid frames

[IMC15] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, Georg Carle: MoonGen: A Scriptable High-Speed Packet Generator, ACM SIGCOMM Internet Measurement Conference (IMC), Oct. 2015

[ANRP17] Internet Research Task Force (IRTF) Applied Networking Research Prize, IETF-100, Nov. 2017, https://irtf.org/anrp

[ANCS17] Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, Andrew Moore, Georg Carle: Mind the Gap – A Comparison of Software Packet Generators, ACM/IEEE Symposium on Architectures for Networking and Communications Systems 2017

