

# Advanced Computer Networking (ACN)

IN2097 - WiSe 2025-2026

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller

Christian Dietze, Marcel Kempf, Lorenz Lehle

Chair of Network Architectures and Services School of Computation, Information and Technology Technical University of Munich

# Link-Layer Protocols



Protocol mechanisms

Link Layer

Ethernet

MAC addresses

Layer 2 switching

Spanning tree

Bibliography

# Link-Layer Protocols



### Protocol mechanisms

Link Layer

Etherne

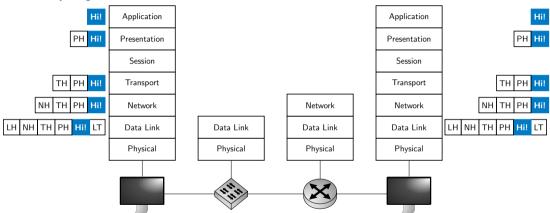
MAC addresses

Layer 2 switching

Spanning tree

Bibliography

# Protocol mechanisms Contents




## All or some of the following:

- Addressing/naming: manage identifiers
- Fragmentation: divide large message into smaller chunks to fit lower layer
- Re-sequencing: reorder out-of-sequence protocol data units (PDUs)
- Error control: detection and correction of errors and losses
  - · retransmission; forward error correction
- Flow control: avoid flooding/overwhelming of receiver
- Congestion control: avoid flooding of slower network nodes/links
- · Resource allocation: administer bandwidth, buffers, CPU among contenders
- Multiplexing: combine several higher-layer sessions into one "channel"
- Compression: reduce data rate by encoding
- Privacy, authentication: security policy (against listening/exploitation)

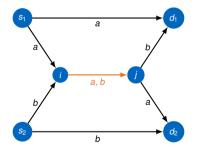
# Protocol mechanisms Protocol layering





### Send side (layer N)

- 1. input: header + payload of layer N+1
- 2. extend input with header of layer N
- 3. output: pass extended data to layer N-1

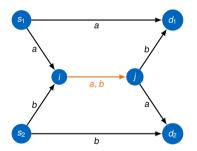

# Receive side (layer N)

- input: payload of layer N-1
- 2. process data and remove header of layer N from input
- output: pass payload of layer N to layer N+1

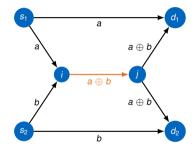
# Protocol mechanisms Forwarding/routing vs. network coding



Nodes  $d_1$  and  $d_2$  should receive messages a, b




- Forwarding and routing
- Only one packet can be transmitted via a single link at the same time
- Bottleneck at link between i and j


# Protocol mechanisms Forwarding/routing vs. network coding



Nodes  $d_1$  and  $d_2$  should receive messages a, b



- Forwarding and routing
- Only one packet can be transmitted via a single link at the same time
- Bottleneck at link between i and j



- Network coding
- Transmits a single, modified packet a ⊕ b between i and j (no bottleneck!)
- d<sub>1</sub> and d<sub>2</sub> can reconstruct original packets from the two received packets respectively

# Protocol mechanisms Forwarding/routing vs. network coding



### Advanced protocol mechanisms

#### Network Coding

- A different type of routing
- Nodes in a network combine packets possibly from different sources and generate groups of encoded packets
- Network coding allows to achieve the maximum possible information flow in a network
- Covered in specific lecture Network Coding (IN2315)
- Outgoing packets are arbitrary combinations of previously received packets
- Coding, i.e. combining packets, may happen on any node in the network (in contrast to FEC)

### Traditional routing and forwarding

- Routing determines best paths from source to destination
- Packets are forwarded by switches and routers along one of these paths
- Packet payloads remain unaltered

# Protocol mechanisms Protocol layering



#### Observation

- Certain protocol mechanisms of one layer also used in other layer
- Examples:
  - layer 4 mechanism (e.g., TCP ACKs & retransmissions) as also used in layer 2 (e.g., WLAN retransmissions)
  - routing in layer 3, but with certain technologies (ATM, MPLS) also below

# Protocol mechanisms Protocol layering



#### Observation

- Certain protocol mechanisms of one layer also used in other layer
- Examples:
  - layer 4 mechanism (e.g., TCP ACKs & retransmissions) as also used in layer 2 (e.g., WLAN retransmissions)
  - routing in layer 3, but with certain technologies (ATM, MPLS) also below

### True definition of a layer n protocol (by Radia Perlman)

Anything designed by a committee whose charter is to design a layer n protocol

# Protocol mechanisms Layering considered harmful?



### Benefits of layering

- Need layers to manage complexity
  - don't want to reinvent Ethernet-specific protocol for each application
- Common functionality
  - "ideal" network

#### but:

- Layer N may duplicate lower layer functionality (e.g. error recovery)
- Different layers may need same information
- Layer N may need to peek into layer N+x

# Link-Layer Protocols

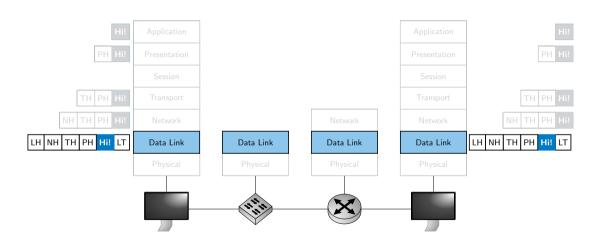


Protocol mechanisms

## Link Layer

Ethernet

MAC addresses

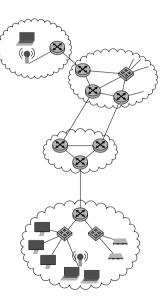

Layer 2 switching

Spanning tree

Bibliography

# Link Layer






# Link Layer Link layer terminology



- Hosts and routers are nodes
- Communication channels that connect adjacent nodes along communication path are links
  - wired links
  - wireless links
  - LANs
- Layer-2 protocol data unit is called frame
- Layer-3 protocol data unit is called packet, or datagram.
  - "A datagram can be broken into smaller pieces called fragments, each of which is sent as a separate Internet datagram."- RFC 791 §2.3.

The data link layer has the responsibility of transferring a datagram from one node to an adjacent node over a link.



# Link Layer Services



## Framing, link access

- Encapsulate datagram into frame, adding header, trailer
- · Channel access if shared medium
- "MAC" addresses used in frame headers to identify source and destination node
  - different from IP address!
  - Question: Why are there different addresses at L2 and L3?

### Reliable delivery between adjacent nodes

- Rarely used on low bit-error rate links (fiber, some twisted pair)
- Wireless links: high error rates
  - ► L2 retransmission scheme, e.g., in wireless LAN (IEEE 802.11)
    - Question: Why both link-level and end-to-end reliability?

## Link Layer Services Continued



#### Flow control

Pacing between adjacent sending and receiving nodes

#### Error detection

- Errors caused by signal attenuation, noise
- Receiver detects presence of errors:
  - signals sender for retransmission or drops frame

#### Error correction

- Receiver identifies and corrects error(s)
  - Error correcting codes: correcting bit errors without retransmission
  - Terminology "error correction" may include retransmissions

# Half-duplex and full-duplex

With half duplex, nodes at both ends of link can transmit, but not at same time

# Link Layer Two types of "links"



### Point-to-point

- point-to-point link between Ethernet switch and host
- PPP for dial-up access

### Broadcast (shared wire or medium)

- old-fashioned Ethernet
- upstream HFC (Hybrid Fiber Coax)
- 802.11 wireless LAN

# Link Layer Multiple access protocols



### Situation

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
  - Collision if node receives two or more signals at the same time

### Definition of a Multiple access protocol:

- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Communication about channel sharing uses channel itself, i.e., no out-of-band channel for coordination

# Link Layer

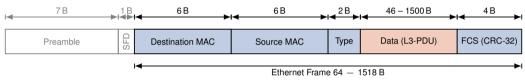
## MAC Protocols: A Taxonomy (Three broad classes)



### **Channel Partitioning**

- Divide channel into smaller "pieces" (time slots, frequency, code)
- Allocate piece to node for exclusive use

#### Random Access


- Channel not divided, allow collisions, "recover" from collisions
- Examples of random access MAC protocols:
  - ALOHA, slotted ALOHA
  - CSMA, CSMA/CD, CSMA/CA

### "Taking turns"

- Nodes take turns, nodes with more to send can take longer turns
- Polling from central site, token passing
- · Bluetooth, FDDI, IBM Token Ring



Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frames

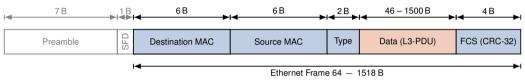


• Ethernet packet (physical layer):

SFD

IPG Inter packet gap, minimum idle period between two packets

Preamble Preamble (7 byte: 1010101010...)


Start-of-frame delimiter (10101011)

# Link Layer

# ТШП

#### Ethernet frame structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frames



Ethernet frame (data link layer):

Dst MAC Destination Address
Src MAC Source Address

Type/Length Ethernet II frame format:

Protocol type of payload (e.g. IP, ARP, ...)

Ethernet I and IEEE 802.3 frame format (rarely used today):

Length of payload in byte

Data Data

PAD Padding (if data length is less than 46 byte)

FCS Frame Check Sequence: CRC-32

# Link Layer

For comparison: IPv4 datagram [1]



| Offset | 0                            | 1   | 2 | 3 | 4 | 5 | 6  | 7    | 8   | 9   | 10   | 11  | 12  | 13 | 14 | 15              | 16 | 17                    | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|--------|------------------------------|-----|---|---|---|---|----|------|-----|-----|------|-----|-----|----|----|-----------------|----|-----------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0 B    | B Version IHL TOS Tota       |     |   |   |   |   |    |      |     |     | al L | _en | gth | 1  |    |                 |    |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4 B    |                              |     |   |   |   | ı | de | ntif | cat | ior | 1    |     |     |    |    |                 | F  | Flags Fragment Offset |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 8B     |                              | TTL |   |   |   |   |    |      |     | Р   | rot  | oco | ol  |    |    | Header Checksum |    |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12B    | Source Address               |     |   |   |   |   |    |      |     |     |      |     |     |    |    |                 |    |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 16B    | Destination Address          |     |   |   |   |   |    |      |     |     |      |     |     |    |    |                 |    |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 20 B   | Options / Padding (optional) |     |   |   |   |   |    |      |     |     |      |     |     |    |    |                 |    |                       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

# Link Layer MAC addresses



### 32 bit IPv4 address

- Network layer address
- used to get datagram to destination IP subnet

### MAC / LAN / physical / Ethernet address

- Function: transmit frame from one interface to another physically-connected interface (same network)
- 48 bit MAC address (for most LANs)
  - burned in network adapter ROM or configurable in software

# Link-Layer Protocols



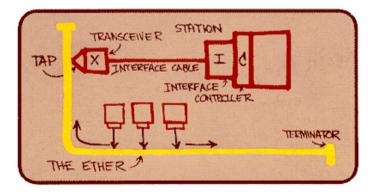
Protocol mechanisms

Link Layer

### Ethernet

MAC addresses

Layer 2 switching


Spanning tree

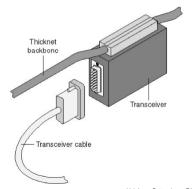
Bibliography

# Ethernet Overview



- Most common wired LAN technology
- Cheap network cards (NICs)
- First widely used LAN technology
- Simpler and cheaper than Token ring / ATM / MPLS
- Kept up with speed race: 10 Mbps 800 Gbps (next: 1.6 Tbps Ethernet)




Metcalfe's Ethernet sketch (1976)

# Т

# 10BASE5 - Thick Ethernet (IEEE 802.3, standardized 1983)

- Single bus system of thick coax cable (yellow)
- 10BASE5: 10 Mbit/s
- Segments of 500 m, can be coupled with repeaters (max. 5 segments)
- Transceiver (transmitter & receiver) MAU (medium attachment unit) with carrier sensing function
- Transceiver cable max. 50 m





# ТЛП

# 10BASE2 - Thin Ethernet (IEEE 802.3a, standardized 1985)

- Single bus system of thinner coax cables (cheaper and more flexible)
- 10BASE2: 10 Mbit/s
- Segments of max. 185 m (max. 5 segments)
- Transceiver can be part of Ethernet adapter



Figure 1: T-piece



Figure 2: BNC terminator



Figure 3: NIC with BNC connector

# ТШП

## Bus vs. Star

### Logical bus topology (10BASE5, 10BASE2):

- All nodes are part of a common collision domain
- Defect bus wire splits network in two parts

### Star topology (newer standards):

- Active switch in center
- Each "spoke" runs a (separate) Ethernet protocol, therefore a defect wire disconnects only one host

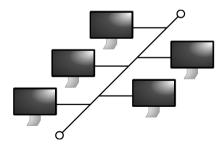



Figure 4: Bus topology

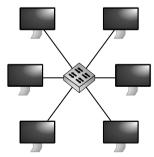



Figure 5: Star topology

# ТИП

- 10BASE-T Twisted Pair (IEEE 802.3i, standardized 1990)
  - Uses star topology (hubs or switches) to connect devices
  - CAT-3 or CAT-5 cables (uses two pairs of twisted wires)
  - Reuses standardized connectors and wiring of telephone networks
  - 10BASE-T: 10 Mbit/s
  - Segments of max. 100 m (max. 5 segments)



Figure 6: 8P8C connector (also known as RJ45)



Figure 7: NIC with RJ45 connector

# Ethernet RJ45-based Ethernet Standards



### 100BASE-TX - Fast Ethernet (IEEE 802.3u, standardized 1995)

- CAT-5 cables or better (uses two pairs of twisted wires)
- 100BASE-TX: 100 Mbit/s

### 1000BASE-T - Gigabit Ethernet (IEEE 802.3ab, standardized 1999)

• CAT-5 cables or better (uses four pairs of twisted wires)

### 10GBASE-T - 10 Gigabit Ethernet (IEEE 802.3an, standardized 2006)

- standardized in 2006
- CAT-6a cables or better

## 2.5GBASE-T / 5GBASE-T (IEEE 802.3bz, standardized 2016)

· works fine on most CAT-5 installations

# Ethernet RJ45-based Ethernet



### Advantages

- robustness
- cheap, existing wiring

## Disadvantages

- short cable lengths
- high energy consumption (for 10G)

| NIC |                    | Offload | Media  | Idle | Power | (W)   |                          | 1 1    | Throughput  | (Chne) | Active    |
|-----|--------------------|---------|--------|------|-------|-------|--------------------------|--------|-------------|--------|-----------|
|     | NIC                | Omoad   | Media  | 3.3v | 12v   | Total | NIC                      | Media  | Theoretical | Actual | Power (W) |
|     | Intel(Base-T)      | No      | Base-T | 6.0  | 15.2  | 21.2  | Intel 1G                 | Base-T | 2           | 1.7    | 1.9       |
|     | Solarflare(Base-T) | No      | Base-T | 1.0  | 17.0  | 18.0  | Broadcom Multiport(2x1G) | Base-T | 4           | 3.3    | 7.0       |
|     | Broadcom(Fibre)    | Yes     | Fibre  | 5.9  | 7.2   | 13.1  | Intel Multiport(2x1G)    | Base-T | 4           | 3.3    | 3.6       |
|     | Solarflare(Fibre)  | No      | Fibre  | 2.6  | 3.1   | 5.7   | Intel Multiport(4x1G)    | Base-T | 8           | 5.7    | 12.5      |

(a) 10G Ethernet [2]

(b) 1G Ethernet [2]

[2] R. Sohan et al., "Characterizing 10 gbps network interface energy consumption," in IEEE Local Computer Network Conference, IEEE, 2010, pp. 268–271

# Ethernet Other Ethernet standards



### Many different Ethernet standards

- Sharing a common MAC protocol and frame format
- Different bandwidths: 10M, 100M, 1G, 2.5G, 5G, 10G, 25G, 40G, 100G, 200G/400G (standardized in 2018), 800G (standardized in 2024)
- Different physical layer media, such as:
  - twisted pair (xBASE-T)
  - twinaxial cabling (twinax)
  - unshielded twisted-pair (xBASE-T1)
  - multimode optical fiber (short range)
  - singlemode optical fiber (long range)
  - backplane
  - chip-to-chip interfaces on NIC

# Ethernet Supporting different physical media



## Pluggable transceiver module



Figure 9: NIC with two slots for pluggable transceivers

# Ethernet Modern transceiver modules

# ТШП

- SFP (small form-factor pluggable) modules
- Most common standard for switchable transceivers
- Different generations (SFP for 1 GbE, SFP+ for 10 GbE, ...)
- SFP modules are very common for professional equipment



Figure 10: SFP module



Figure 11: Direct-Attach Copper (DAC) twinaxial cable with integrated SFP modules (cheap, used for low range connections  $\leq\!15\,\text{m})$ 

# Ethernet Limitations of layer 2



Could Ethernet scale up to a very large (global) network?

# Ethernet Limitations of layer 2



## Could Ethernet scale up to a very large (global) network?

### Scalability problems:

- Flat addresses
- No hop count (so loops may lead to disaster)
- Missing additional protocols (such as ICMP)
- Perhaps missing features:
  - Fragmentation
  - Error messages
  - Congestion feedback



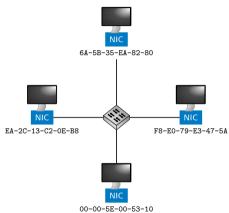
Protocol mechanisms

Link Layer

Ethernet

MAC addresses

Layer 2 switching


Spanning tree

Bibliography

### MAC addresses Example Network



#### Each adapter on a LAN has a unique MAC address

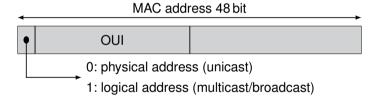


## MAC addresses MAC address layout



- Human-friendly notation for MAC addresses
  - six groups of two hex digits, separated by "-" or ":", in transmission order, e.g., 0C-C4-11-6F-E3-98
- Multicast and broadcast
  - Broadcast address: FF-FF-FF-FF-FF
  - Multicast address: least-significant bit of first byte has value "1"
- Organizationally Unique Identifier (OUI): company ID
  - manufacturer purchases portion of MAC address space from IEEE Registration Authority (assuring uniqueness)
  - OUI: First 3 bytes of address in transmission order
  - OUI enforced: 2nd least significant bit of first byte has value "0",
  - otherwise: locally administered MAC address
- Locally administered MAC addresses:
  - Similar to private address blocks on layer 3
  - E.g. used for VMs
- MAC address: flat address portability (+ implication on privacy)
  - · can move LAN card from one LAN to another
- IP address: hierarchical address NOT portable
  - address depends on IP subnet to which node is attached

# MAC addresses Bit-reversed representation of MAC address




- Corresponds to convention of transmitting least-significant-bit of each byte first in serial data communications (transmission of LAN addresses over the wire)
- Also known as "canonical form", "LSB format" or "Ethernet format" (LSB: Least Significant Bit):
  - First bit of each byte on the wire maps to least significant (i.e., right-most) bit of each byte in memory (cf. RFC 2469)
- Token Ring (IEEE 802.5) and FDDI (IEEE 802.6) do not use canonical form, but instead: most-significant bit first

### MAC addresses MAC addressing modes



- General address types (L2 and L3): Unicast, Multicast, Broadcast, Anycast
- Terminology to distinguish destination MAC addresses
  - Physical addresses: identify specific MAC adapters
  - Logical addresses: identify logical group of MAC destinations



- LAN broadcast address: FF-FF-FF-FF-FF
- · Transmission of multicast frames
  - · sender transmits frame with multicast destination address
- · Reception of multicast frames
  - NICs can be configured to capture frames whose destination address is:
    - their unicast address. or
    - one of a set of multicast addresses

### MAC addresses Addresses and naming



#### Addresses are defined across three layers

- 1./2. Physical / link level
  - Medium Access Control (MAC)
  - 3. Network/IP level
    - IP addresses
      - $\leftrightarrow$  mapping to domain names
  - 4. Transport/application level
    - Ports
      - → mapping to services
        - Standardized, well-known ports
        - Dynamic mapping



Protocol mechanisms

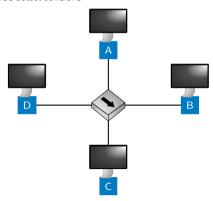
Link Laye

Etherne

MAC addresses

Layer 2 switching

Spanning tree


Bibliography

### Layer 2 switching Hub



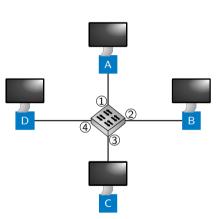
#### Physical-layer ("dumb") repeaters:

- Bits arriving on one link go out on all other links at same rate
- Frames from all nodes connected to hub can collide with each other
- No frame buffering
- No collision detection at hub: host NICs detect collisions



#### Layer 2 switching Switch



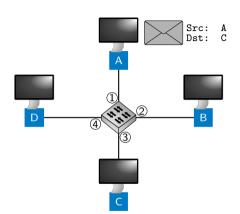

- Link-layer devices: smarter than hubs, take active role
  - Store & forward of Ethernet frames or cut-through-switching
  - Examine incoming frame's MAC address, selectively forward frames to one or more outgoing links
- Transparent
  - Hosts are unaware of presence of switches
- Plug-and-play, self-learning
  - Switches do not need to be configured

### Layer 2 switching

#### Switch: simultaneous transmission



- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
  - · each link is its own collision domain
- Switching: A-to-C and B-to-D simultaneously, without collisions
  - not possible with dumb hub




### Layer 2 switching Switch: self-learning



Switches learn which hosts can be reached through which interfaces

- When a frame is received, a switch "learns" location of sender: incoming LAN segment
- Records sender/location pair in switch table
- · Expiry time: soft state mechanism



| MAC address |   | interface |   | time |
|-------------|---|-----------|---|------|
| Α           | ī | 1         | Ī | 60   |

Table 1: Switch table (after learning location of A)

#### Layer 2 switching Switch: frame filtering/forwarding

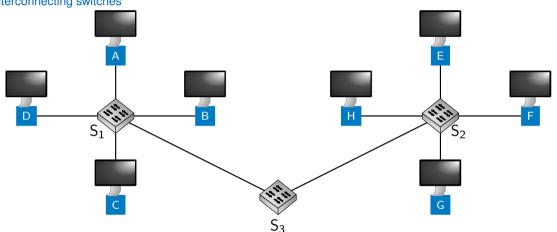


- 1. record link associated with sending host
- 2. index switch table using MAC destination address
- 3. if entry found for destination:

if destination on segment from which frame arrived:

drop the frame

else:


forward the frame on interface indicated

else:

flood (forward on all interfaces except the interface on which frame arrived)

## Layer 2 switching Interconnecting switches





Q: Sending from A to G - how does S<sub>1</sub> know to forward frame destined to G via S<sub>3</sub> and S<sub>2</sub>?

A: Self-learning! (works exactly the same as in single-switch case!)

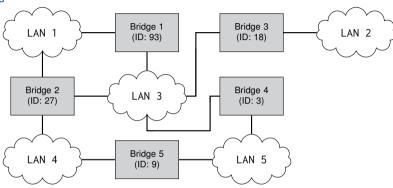


Protocol mechanisms

Link Layer

Etherne

MAC addresses


Layer 2 switching

Spanning tree

Bibliography

## Spanning tree Preventing loops





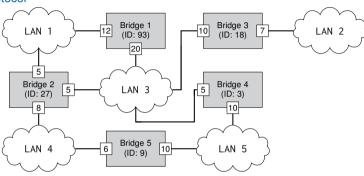
#### Spanning tree protocol

- Bridges gossip among themselves
- Compute loop-free subset
- Forward data on the spanning tree
- Other links are backups



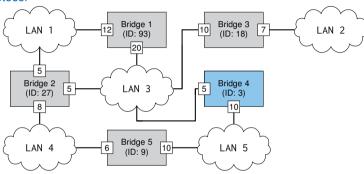
- Spanning Tree Protocol (STP): standardized as IEEE 802.1D
- Algorithm by Radia Perlman
- Algorithm:
  - Uses bridge\_ID (concatenation of 16 bit bridge\_priority and MAC\_addr)
  - Step 1: select root bridge, i.e. bridge with lowest bridge\_ID
  - Step 2: determine least cost paths to root bridge
    - each bridge determines cost of each possible path to root
    - each bridge picks least-cost path
    - port connecting to that path becomes root port (RP)
    - bridges on network segment determine bridge port with least-cost-path to root, i.e. the designated port (DP)
  - Step 3: disable all other root paths
- Bridge Protocol Data Units (BPDUs) are sent regularly (default: 2s) to STP multicast address




#### Bridge Protocol Data Units (BPDUs)

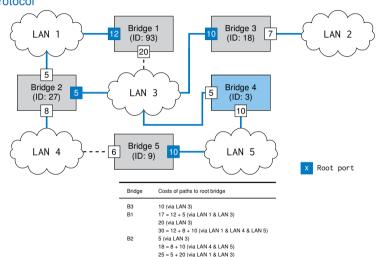
- Configuration BPDUs transmit bridge\_IDs and root path costs
- Topology Change Notification (TCN) BPDU announce changes in network topology
- Topology Change Notification Acknowledgment (TCA)

#### STP switch port states


- Blocking
- Listening
- Learning
- Forwarding
- \_. . . . . `
- Disabled



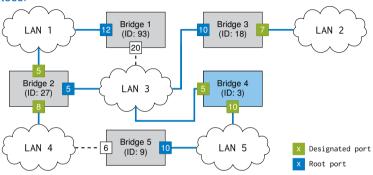



Select root bridge





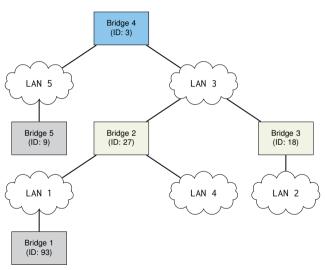
Find shortest paths to root bridge






10 (via LAN 5) 11 = 6 + 5 (via LAN 4 & LAN 3) 31 = 6 + 5 + 20 (via LAN 4 & LAN 1 & LAN 3)

B5






- Designated port: provides connectivity for LAN
  - e.g., Bridge 2 becomes designated bridge for LAN 1 and LAN 4

### Spanning tree Resulting spanning tree





## Spanning tree Acknowledgements



- Jim Kurose, University of Massachusetts, Amherst
- Keith Ross, Polytechnic Institute of NYC
- Olivier Bonaventure, University of Liege
- Srinivasan Keshav, University of Waterloo



Protocol mechanisms

Link Laver

Ethernet

MAC addresses

Layer 2 switching

Spanning tree

Bibliography



- [1] DARPA, Internet Protocol, https://tools.ietf.org/html/rfc791, 1981.
- [2] R. Sohan, A. Rice, W. M. Andrew, and K. Mansley, "Characterizing 10 gbps network interface energy consumption," in IEEE Local Computer Network Conference, IEEE, 2010, pp. 268–271.