Technical University of Munich

Advanced Computer Networking (ACN)

IN2097 — WiSe 2025-2026
Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmiiller

Christian Dietze, Marcel Kempf, Lorenz Lehle

Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Motivation

Reproducible experiments

e Everyone agrees that reproducible research is important
e Scientific community tries to incentivize reproducible research:

Motivation

Motivation

Reproducible experiments

e Everyone agrees that reproducible research is important
e Scientific community tries to incentivize reproducible research:

Motivation

Motivation TI.IT'

Problems with reproducibility
® Two workshops at SIGCOMM conference dedicated to reproducible research:

e SIGCOMM03: MoMeTools workshop
e SIGCOMM'17: Reproducibility workshop
e Problems remained the same over 14 years

Best solution so far ...
e Artifact Evaluation Committees & Reproducibility Badges
® Problems:

e High effort
e Potentially low robustness (CCR Apr. '20")

ACM'’s badges awarded by the Artifact Evaluation
Committee

T[] N. Zilberman, “An Artifact Evaluation of NDP”, Comput. Commun. Rev., vol. 50, no. 2, pp. 32-36, 2020

Motivation

Reproducibility-as-a-Service

What is reproducibility?

e 3-stage process according to ACM?:

1. Repeatability: Same team executes experiment using same setup
2. Reproducibility: Different team executes experiment using same setup
3. Replicability: Different team executes experiment using different setup

e Our testbed-driven approach mainly targets the experimental setup
- Focus our effort on repeatability and reproducibility
- Replicability requires additional effort by others

2[2] ACM, Artifact Review and Badging Ver. 1.1, 2020. [Online]. Available: https://www.acm.org/publications/policies/artifact-review-and-badging-current

Reproducibility-as-a-Service

4

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Reproducibility-as-a-Service

How can we limit effort spent on reproducibility?

e Reduce amount of work for artifact evaluators or other researchers
e Make reproducibility part of experiment design

- Automate entire experiment (setup, execution, evaluation)
How can we create robust, reproducible experiments?

e Document all relevant parameters for experiments
® Automate the documentation of experiments
- Well-structured experiment workflow serving as documentation

Reproducibility-as-a-Service

The Plain Orchestrating Service (pos)

Our solution to create reproducible research
1. Create a testbed management system
2. Create a well-defined experiment workflow

The Plain Orchestrating Service (pos)

The Plain Orchestrating Service (pos)

Our solution to create reproducible research
1. Create a testbed management system
2. Create a well-defined experiment workflow

Achieving Repeatability
e Automation
e Live images

e Researchers must automate configuration
* No residual state between reboots

- Experiments become repeatable

Achieving Reproducibility
e Providing access to experiment infrastructure
e Other researchers can easily (re-)run experiment
- Experiments become reproducible

Controller

- ~
- ~
~

LoadGen) }—{ DuT ‘

Minimal pos experiment topology

The Plain Orchestrating Service (pos)

pos’ Methodology

Setup phase
e Controller manages experiment
e Controller configures experiment nodes (DuT, LoadGen)
e Global/ local variables (vars) parameterize setup
Measurement phase
® Repeated execution of measurement script
® Loop variables parameterize each measurement run

e e.g, different packet rates
e data of each run is connected to a specific set of loop vars

Evaluation phase
e Collected results / loop vars used for experiment evaluation

e Automated experiment release (git repository, website)

Evaluation

Phase

Controller

LoadGen

Task

Task
Description

Publication

[JScript
(O Parameters
[JResult Data

pos workflow

pos’ Methodology

pos Workflow: Experiment Script 'I'I.I'I'I

DuT Controller LoadGen

)
(2]
g o 7 - -
o / \ TN
. A4 (
o | TN \ ‘
2 o Global\ .l Setup |\
2 {)
L N)
)
o [y
= —=
e Task
E Description
g — 7
5 ﬂ —
(2]
g Result: II
esults
=
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘,,,,,,,,,,,,,,,,,,,,,,,,,
Evaluation
[JScript

Evaluation
Phase

o (O Parameters
Publication [JResult Data

pos workflow

pos Workflow: Experiment Script

pos Workflow: Experiment Script

Experiment Script

e Command line tool: pos

e Specifies the high-level workflow:

[A

Node allocation
Variable loading

Node config and reboot
Node setup
Experiment execution
Node de-allocation

allocate exper

pos allocations

pos allocations

pos allocations

pos allocations

pos allocations

configure & r

pos nodes
pos nodes
pos nodes
pos nodes

setup n

image
image
reset
reset

iment nodes

allocate --duration 10 $DUT $LOADGEN

set_variables $DUT --as-global ./global-variables.yml

set_variables $DUT ./nodel/nodel.yml
set_variables $LOADGEN ./node2/node2.yml
set_variables $DUT --as-loop ./loop-variables.yml

boot nodes

$DUT debian-bullseye
$LOADGEN debian-bullseye
$DUT --non-blocking
$LOADGEN --non-blocking

pos commands launch --infile nodel/setup.sh --queued $DUT

pos commands launch --infile node2/setup.sh --queued $LOADGEN

execute

pos commands launch --infile
pos commands launch --infile

free

experiment on nod

pos allocations free $DUT

nodel/measurement.sh --queued --loop $DUT

node2/measurement.sh --blocking --loop $LOADGEN

pos Workflow: Experiment Script

pos Workflow: Global and Local Variables 'I'I.I'I'I
° DuT Controller ~ LoadGen
(2]
s @) e e
= Tl Setup fee ed - Setup |7
7] Vars
v TN T

Run | —
T sk | (leop) [Task
Description “\\/arsl/“ Description

E —*— .
Results | I

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘,,,,,,,,,,,,,,,,,,,,,,,,,

[JScript
o (O Parameters
W [JResult Data

pos workflow

Measurement Phase

Evaluation
Phase

pos Workflow: Global and Local Variables 10

pos Workflow: Global and Local Variables

Variables
® Global variables are available on all participat-
ing nodes
e Local variables are available only on specific
nodes
e Variables format:

e YAML
e JSON

repo:
moongen :
commit:

interface:
rx: 1’
tx: 2’

interface:
rx: '0’
tx: 2’

"https://github.com/emmericp/MoonGen’
’7746ff2f0afdbb222aa9ch220b48355€2d19552b

Listing 1: Global vars

Listing 2: Local vars for LoadGen

Listing 3: Local vars for DuT

pos Workflow: Global and Local Variables

pos Workflow: Setup Script 'I'I.I'I'I

DuT Controller LoadGen

)
(2]

g o 7 - -
o / N\ TN

- A2 (

o SN [\ ‘
2 L Globaly o Setup |7

2 {)
L)
)

o [y

= —=

e Task

E Description

g B 7

5 ﬂ —

(2]

g Results | I

esults
=
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘,,,,,,,,,,,,,,,,,,,,,,,,,
Evaluation
[JScript

Evaluation
Phase

o (O Parameters
Publication [JResult Data

pos workflow

pos Workflow: Setup Script

pos Workflow: Setup Script

Setup Script

® Setup script for individual nodes

e Typical high-level workflow:

1.
2.

3.

Get variables
Install dependencies
Configure system

e Format of setup script:

Shell scripts for simple setups

Ansible to execute complex configuration
scripts

Any script that can be run on experiment
node

get global variables
GIT_REPO=$(pos_get_variable --global repo/moongen)
COMMIT_ID=$(pos_get_variable --global repo/commit)

clone repo and install MoonGen

git clone --recursive $GIT_REPO /root/moongen
cd /root/moongen

git checkout $COMMIT_ID

./build.sh

./setup-hugetlbfs.sh

Listing 4: Setup script for load generator and DuT

pos Workflow: Setup Script

pos Workflow: Loop Variables

DuT Controller LoadGen
v o

7 N -
(‘\‘ o) ‘J/Local\\‘
o |) \)
= \virs/ Setup e GlODAY o Setup |- \virs/
(.% \ Vars /

I

Run II N\

)
(%]

@© .

= .

- Run |

2 [P | G [T
E Description Vars Description
o : , ;
>

(2]

(3]

9]

=

el

R — 7

Results | I

[JScript
o (O Parameters
Publication [JResult Data

pos workflow

Evaluation
Phase

pos Workflow: Loop Variables

pos Workflow: Loop Variables

Loop Variables

Variables to parameterize the actual mea-
surements
Typically lists of parameters

Cross product is automatically created by
pos to investigate each possible combina-
tion of the specified parameters

Variables format:

e YAML
e JSON

pkt_sizes:

64,
128,
256,
512,
768,
1024,
1280,
1518
]
rates:
1,
2,

L

L

Listing 5: Loop variables to parameterize the following measurements

pos Workflow: Loop Variables

pos Workflow: Task Description

LoadGen

Controller

TN
‘/ Loop \} Task
\Vars |/ Description

Results | I

Evaluation

Publication

pos workflow

[JScript
(O Parameters
[JResult Data

pos Workflow: Task Description

pos Workflow: Task Description

Task Description

® pos executes the task description once for
each set of parameters

e Typical high-level workflow:

1. Get (loop) variables

2. Wait for other nodes (pos_sync)
3. Perform actual measurement
4. Upload results (pos_upload)

e Format of setup script:
e Shell scripts for simple setups
e Ansible to execute complex configuration
scripts
e Any script that can be run on experiment
node

get global variables
RX=$(pos_get_variable --local interface/rx)
TX=$(pos_get_variable --local interface/tx)
PKT_SZ=$(pos_get_variable --loop pkt_sizes)
RATE=$(pos_get_variable --loop rates)

wait for other hosts

pos_sync

start load generator

cd /root/moongen

pos_run --loop loadgen -- \
MoonGen 13-load-latency.lua -s $PKT_SZ \
-r $RATE $RX $TX -f rates.csv

sleep 120

pos_kill loadgen

upload results

pos_upload --loop rates.csv

Listing 6: Task script for the load generator

pos Workflow: Task Description

pos Workflow: Task Description

Task Description

® pos executes the task description once for
each set of parameters

e Typical high-level workflow:

1. Get (loop) variables

2. Wait for other nodes (pos_sync)
3. Perform actual measurement
4. Upload results (pos_upload)

e Format of setup script:

e Shell scripts for simple setups

® Ansible to execute complex configuration
scripts

® Any script that can be run on experiment
node

get global variables
RX=$(pos_get_variable --local interface/rx)
TX=$(pos_get_variable --local interface/tx)

#wait for other hosts

pos_sync

start the forwarder

cd /root/moongen

pos_run --loop fwd -- MoonGen 1l2-forward.lua $RX $TX
sleep 120

pos_kill fwd

Listing 9: Task script for the DuT

pos Workflow: Task Description

pos Workflow: Result

DuT Controller LoadGen
J/Local \ ! p— y J/Local\‘\
\ Vars). /T ! Vars)
N/l Setup fen | Global 4 Setup |- \‘,,,,/
G N
Run N AN =
Run Il N
Run | an
T sk | (eop), [Task
Description ‘\\/arsy Description
— "*’ —
Results | I
w
® [JScript
on o (O Parameters
Publication [JResult Data

Evaluation

pos workflow

pos Workflow: Result

pos Workflow: Result

Result

e Result files are collected on management
host

e Result files are annotated with specific
loop parameter set
e Format:
e Command line output
e CSV
e Arbitrary formats possible

"timestamp”;"rx_mpps"”;"tx_mpps”;
1666295702860;0.0;0.0;
1666295703857;0.0;0.0;
1666295704856;3.01;2.97;
1666295705859;12.49;12.47;
1666295706861;12.47;12.48;
1666295707858;12.46;12.45;
1666295708859;12.48;12.49;
1666295709862;12.47;12.48;

Listing 10: Example output file containing generated and received throughput

pos Workflow: Result

pos Workflow: Evaluation

LoadGen

DuT Controller

Run | — ']
T sk | (eop), [Task
Description ‘\Varsy Description

Z - ,/

Results | I

Evaluation

[JScript
(O Parameters

Publication [JResult Data

pos workflow

pos Workflow: Evaluation

20

pos Workflow: Evaluation

Evaluation

e Automated evaluation is essential part of
experiment design

e We propose to use Jupyter notebooks for
evaluation

e Jupyter supports a variety of different
programming languages

e Jupyter notebooks can be nicely evalu-
ated manually (via browser)

e Jupyter notebooks can be run on com-
mand line automatically

8 pos-experiment - upyterNot X v
C @ localhost:8888/notebooks/pos-experiment.ipynb O % ©»00 :
~ Jupyter p iment Last Check e L
Flo Edt Vew st Col Kemal Widgets Hep s | Python 3 Geykerna) O

B+ 2 @B 44 PR B C B Mo =

Plt.title("1500-byte packets")
Plt.xlabel("Configured Rate (Mpps]®)
Plt.ylabel("Forvard Rate (Mpps)®)

pLt.plot (cor
pLt.plot (cor
pLt.xticks (np.
plt.yticks (np..
plt.legend()

jars(“rates], 1500), tx_output(’pkt_sizes 1500"], label="Tx")
ars|“rates"], 1500), rx_output('pkt_sizes 1500°], label="RX")
1)
L

<matplotlib.legend.Legend at 0x7efe10944208>

64-byte packets

10
—t ™
RX
s
g6
I
2
0
o 2 s 6 18 20

8 10 1 1
Configured Rate [Mpps]

Jupyter notebook evaluation

pos Workflow: Evaluation

m

21

pos Workflow: Publication

LoadGen

DuT Controller

N — . /

=)

)

(%]

@©

=

C Runt — :
[Tk] (loop) [Task
E Description ‘\Varsy Description
o ‘ — ”
>

(2]

(3]

9]

=

(O Parameters

Publication [JResult Data

Evaluation
Phase

pos workflow

pos Workflow: Publication

22

pos Workflow: Publication

Publication
e Well-defined workflow:

e Documentation for people familiar with
workflow

® Release of experiment and results as
repository

e Automated processing of experimental
data as website

-0 O & hpsigalanmugitbiolpos-srfacts/ebf2020-10-07.23-22-39_ 8680 P ° e

=

Home .
Experiment 0
[S—
Exporimont0
Exporment 1
[
D R N B

[S

Website generated by pos experiment workflow

pos Workflow: Publication

23

Recommended Tools TI-ITI

git

Jason Long / CC BY 3.0

e Git repository for scripts

e Can be used for development of experiments
e Valuable benefit: keeps track of different versions

e MoonGen for packet generation

e Any software tool can be installed/used in experiments
e We rely mostly on MoonGen for generating test traffic
e |ts high precision and accuracy support reproducible experiments

® Ansible for configuration management
e Setup script can be done in any language

e For simple setups we typically use shell scripts
e For complex setups we recommend Ansible

e Jupyter for evaluation
e Evaluation scripts can be done in any language
e Jupyter Notebooks are widely used
e Heavily used by other testbeds (e.g., Chameleon)
e Alternative tool CWL (Common Workflow Language), mainly used in ML/Al do-
main

Recommended Tools 24

Data Management Aspects

Additional aspects to consider

e Reproducibility of experiments is important but not sufficient
e Data management aspects:

e Experimental artifacts must support the FAIR data principles
e pos controller offers enough flexibility to employ well-known data and metadata formats
® pos controller also offers the possibility to automate data collection

Data Management Aspects

Data Management Aspects

FAIR

IEoIable/ \ccessible |nteroperable

IORVE

Graphics: Sangya Pundir / CC BY-SA 4.0

R
.
%W

eusable

Data Management Aspects

Data Management Aspects

FAIR
|ino|ab|e / \coessible |nteroperable | {eusable
Graphics: Sangya Pundir/ CC BY-SA 40
e Findable: e Interoperable:
e Automated generation of metadata e Well-known formats (pcaps, JSON, YAML, Jupyter)
e Structured experimental workflow ® Well-known tools (git, Gitlab, GitHub)
e Accessible: e Reusable:
® Well-known formats (pcaps, JSON, YAML, Jupyter) e Structure that documents experiments
e Well-known tools (git, Gitlab, GitHub) ® Repeatable, modifiable and publishable experiments

Data Management Aspects

26

Summary 'I'I.I'I'I

e pos‘is...
® atestbed orchestration service, and
® an experiment methodology.

Methodology makes experiments ...
e repeatable as everything is automated,
e reproducible as others can re-run the automated pos experiments, and
e easier to replicate as the experiment scripts document experiments.

12

pos reduces the effort to create reproducible experiments.

12

pos complements the ACM awards—it does not replace them.

4[3] S. Gallenmiiller et al., “The pos framework: A methodology and toolchain for reproducible network experiments”, in CoNEXT 21, Virtual Event, Munich,
Germany, December 7 - 10, 2021, ACM, 2021, pp. 259-266. DOI: 10.1145/3485983.3494841
Summary 27

https://github.com/gallenmu/pos-artifacts
https://gallenmu.github.io/pos-artifacts
https://doi.org/10.1145/3485983.3494841

Summary 'I'I.I'I'I

e pos'is... Pt g oo

® atestbed orchestration service, and
® an experiment methodology. - Experiment 0

® Methodology makes experiments ...
e repeatable as everything is automated,
e reproducible as others can re-run the automated pos experiments, and
e easier to replicate as the experiment scripts document experiments.

pos reduces the effort to create reproducible experiments.

pos complements the ACM awards—it does not replace them.

e Example experiment:

® Repository: https:/github.com/gallenmu/pos-artifacts

e Website: https://gallenmu.github.io/pos-artifacts Website generated by pos experiment workflow

4[3] S. Gallenmiiller et al., “The pos framework: A methodology and toolchain for reproducible network experiments”, in CoNEXT 21, Virtual Event, Munich,
Germany, December 7 - 10, 2021, ACM, 2021, pp. 259-266. DOI: 10.1145/3485983.3494841
Summary 27

https://github.com/gallenmu/pos-artifacts
https://gallenmu.github.io/pos-artifacts
https://doi.org/10.1145/3485983.3494841

Mini-Lecture: VLAN
Virtual Local Area Network

General Information

e Standardized in IEEE 802.1Q

® Incorporated inside the Ethernet header

e Tunnel endpoints are managed switches

e One physical network to provide multiple separate virtualized Layer 2 networks

Use cases

e Separate “secure” network from “public” network (e.g. CCTV cams)
e Separate different business units (Development, HR, Finances, ...)

e Characterize traffic (see QoS)

Mini-Lecture: VLAN

28

Mini-Lecture: VLAN
Virtual Local Area Network Header Layout

7B 1B 6B 6B 4B 2B 42-1500B 4B
Preamble ‘ ; | Destination MAC | Source MAC | VLAN | Type Data (L3-PDU) | FCS (CRC-32) ‘
D Ethernet Frame 64 — 1522 B ’ \
/ \
7/ \
2B 2B
Field Length
=)
TPID S| @ | VID | PGP 3Bit
a DEI 1Bit
) VID 12Bit
TCl

e VLAN header is inserted between source MAC and ethertype
e Ethernet frames having a VLAN header are called tagged (normal frames are called untagged)
e VLAN header consists of 4 fields:

TPID: “Tag Protocol Identifier”, always 0x8100, used to indicate that a frame is tagged

PCP: “Priority Code Point”, prioritization of traffic, can be used to prioritize different classes of traffic (c.f. IEEE 802.1p)

DEI: “Drop Eligible Indicator”, describes if the frame may be dropped in case of congestion

VID: “VLAN Identifier”, identifies to which VLAN this frame belongs, from 1 to 4094 (0 and 4095 reserved), most important field

Mini-Lecture: VLAN

29

Mini-Lecture: VLAN
Access Ports and Trunk Ports

Access Ports

e Traffic sent to / from this port is not tagged
® Network connected to an access port is logically in one single VLAN
e “The port you connect your desktop to”

Trunk Ports

e Can send/ receive traffic from multiple VLANs

e Tagged frames are forwarded unchanged

e Every untagged frame is tagged using the native VLAN

e Typical switch-to-switch link

e Use with VLAN-aware hosts (VLAN must be configured on the end host)

Mini-Lecture: VLAN

30

Mini-Lecture: VLAN
Example network

- CCTV Camera CCTV Camera

----- VLAN 1 (untagged)
(@

............... VLAN 2 (untagged)

------- VLAN 3 (untagged)

+ Mixed (tagged)

e Switch-to-Switch ports are trunk ports
e Switch-to-Server port is a trunk port
e All other switch ports are access ports

Mini-Lecture: VLAN

31

Mini-Lecture: VLAN
Q-in-Q (stacked VLANS)

Encapsulate VLANs in VLANs

e Defined in IEEE 802.1ad
e Two VLAN headers instead of one (Dst MAC | Src MAC | VLAN | VLAN | Ethertype | ... | FCS)
e Total of 4094 - 4094 = 16760836 VIDs

Use Case: 4094 VIDs are not sufficient

e Large networks may need more than 4094 VLANs
e Expanding the VID space is enough

Use Case: Customer network on top of provider network

® |SPs or data centers use one VLAN per customer

e Customer are isolated from each other

e Customers want to use VLANs themselves

e “Lower” VLAN header is managed by the datacenter / provider
e “Upper” VLAN header is managed by the customer

Mini-Lecture: VLAN

32

Mini-Lecture: VXLAN
Motivation - Virtual eXtensible Local Area Network
General Information

e Standardized in 2014 in RFC 7348 (rather short standard)

e Builds layer 2 overlay network on top of a layer 4 (UDP) underlay network

e Has 24 bit VXLAN network identifier (VNI), which allows 16 million virtualized networks
e Suitable to reach VMs in large data centers / “the cloud”

Problem Statement

e Servers host a large number of VMs

e Each VM has its own MAC address

e VMs need to connect to VMs on other servers

e Switch needs to handle thousands of MAC addresses of VMs

Another Problem Statement

e Provider and clients both want to use VLANs

e Provider allocates VLANSs to clients

e \Very limited amount of VLANSs per client

e Clients may misconfigure the VMs

e Also solved by Q-in-Q (stacked VLANS), but this is not always applicable

Mini-Lecture: VXLAN

33

Mini-Lecture: VXLAN

Approach
14 B 20/40 B 8B 8B variable size
Ethernet Header IP Header | UDP Header | VXLAN Header | L2 Frame (Payload) |
- ~
s ~ N
7 ‘7 > ~
7 1B 3B 3B 1B N

| Flags

Reserved | VNI | Reserved

Encapsulation Strategy

e Encapsulate original layer 2 frame inside UDP
e Virtual networks enumerated by VXLAN Network Identifier (VNI)

UDP header fields

e Source Port: Hash of inner 5-tuple — great for load balancing
e Destination Port: Always 4789
e Length: Length of layer 2 frame + UDP header size

Mini-Lecture: VXLAN

34

Mini-Lecture: VXLAN
Benefits

What makes VXLAN a “good” tunneling protocol?

e Builds on top of a layer 3 with only multiplexing on layer 4 (done by UDP)

e Network may belong to an ISP
® “The Internet” is layer 3
e VXLAN can be used over the Internet, VLAN cannot

e Layer 3 routing protocols can be used (BGP, OSPF, ...)
e Better multipath support

Mini-Lecture: VXLAN

35

Mini-Lecture: VXLAN
Example network

- CCTV Camera CCTV Camera

Links marked as VNI 1/2/3 contain normal Ethernet frames
e Layer 3 network is some arbitrary layer 3 network (e.g. an ISP)
e The two switches encapsulate (/ decapsulate) to (/ from) the VXLAN frames

e Remark: Real world VXLAN-capable switches violate strict layering and use L3 information

Mini-Lecture: VXLAN

36

ACN Infrastructure: Motivation

Hardware testbed
e Hardware typically offers the best performance

® Router project:
® 4 machines for 12 setups
® requires 48 hosts in total

- Our hardware testbed is not large enough to accommodate all students par-
ticipating

Hardware testbed

ACN Infrastructure: Motivation 37

Suitable Environments for Prototyping Testbeds 'I'I.ITI

Emulation [4]
Simulation
Real hardware

Requirements and their relative weight

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 'I'I.I'I'I

Flexibility
Emulation [4] +
Simulation +

Real hardware ~ --

Requirements and their relative weight

e Flexibility: Network topologies are more restricted on real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 'I'I.I'I'I

Flexibility Scalability

Emulation [4] + +
Simulation + ++
Real hardware ~ -- --

Requirements and their relative weight

e Flexibility: Network topologies are more restricted on real hardware
e Scalability: Number of nodes and links is typically limited on real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 'I'I.I'I'I

Flexibility Scalability Interactivity

Emulation [4] + + +
Simulation + ++ .-
Real hardware -- - +

Requirements and their relative weight

e Flexibility: Network topologies are more restricted on real hardware
e Scalability: Number of nodes and links is typically limited on real hardware
e |Interactivity: Simulation environments do not behave like real systems from a user’s perspective

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 'I'I.I'I'I

Flexibility Scalability Interactivity Performance

Emulation [4] + + + --
Simulation + ++ .- -
Real hardware -- -- + i

Requirements and their relative weight

e Flexibility: Network topologies are more restricted on real hardware

e Scalability: Number of nodes and links is typically limited on real hardware

e |Interactivity: Simulation environments do not behave like real systems from a user’s perspective
e Performance: Emulation and simulation hardly deliver the performance of real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds

Flexibility Scalability Interactivity Performance

Emulation [4] + + + --
Simulation + ++ .- -
Real hardware -- -- + i

Requirements and their relative weight

e Flexibility: Network topologies are more restricted on real hardware

e Scalability: Number of nodes and links is typically limited on real hardware

e |Interactivity: Simulation environments do not behave like real systems from a user’s perspective
e Performance: Emulation and simulation hardly deliver the performance of real hardware

- Properties of emulation and simulation environments differ significantly from real hardware

- We need a tool that better approximates real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Testbed on a Single System 'I'I.I'I'I

QOur solution

e We propose a testbed design that relies on virtualization
- Testbed on a single system (toast)

Advantages

e Interactivity: VMs behave like real systems from a user’s perspective

e Performance: VMs can deliver near-native performance (if configured correctly [5])
e Flexibility: Virtual network topologies are highly flexible

e Scalability: Multiple VMs can be hosted on a single server

[5] S. Gallenmiiller et al., “56G QoS: Impact of Security Functions on Latency”, in NOMS 2020 - IEEE/IFIP Network Operations and Management Symposium,
Budapest, Hungary, Apr. 20-24, 2020, IEEE, 2020, pp. 1-9
Testbed on a Single System 39

Architecture

Access module

® Access control module separated from testbed implementa-
tion
® Possible access methods:

e Secure Shell (SSH)
e Webbrowser

e |mproved security:

e Widely used authentication method (OpenlD)

e User data is kept separate from testbed at the authentication
service provider

e OpenlD authentication service can be hosted locally or exter-

nally
e External providers available (fast & easy to set up):

e GitHub, GitLab, Google, etc.

access

web
server

NIC 0

G

toast architecture overview

Architecture

40

Architecture

Controller module
e Testbed controller is fully independent from hosting server:
e Specific OS or configuration for testbed controller becomes
possible
® Testbed controller inside the VM can be changed easily
® Increased security through additional barrier between host
server and virtualized testbed controller

e For toast, we currently use the pos testbed controller [3]

[3] S. Gallenmiiller et al., “The pos framework: A methodology and toolchain for reproducible
network experiments,” in CONEXT "21, Virtual Event, Munich, Germany, December 7 - 10,
2021, ACM, 2021, pp. 259-266. DO 0.1145/3485983.3494841

controller

access

management

software [management vswitch |
VM

web
server

NIC 0

G

toast architecture overview

Architecture

40

https://doi.org/10.1145/3485983.3494841

Architecture

Experiment nodes module
e Each experiment nodes realized as its own VM

e Virtual switch connects the experiment nodes to the testbed
controller
e Virtualization allows high flexibility for experiment nodes:
e Multiple nodes can be virtualized on a single server
e Different kinds of nodes can be virtualized depending on the
resource allocation:
® VM resources can be limited to virtualize resource constrained

devices
® High-performance VMs are allowed to allocate more resources

controller

access

management

software
VM

H management vswitch |

node0 node3| (3
VM VM g
web <
server nodel| [node2 3
VM VM)
PF
NIC 0

G

toast architecture overview

Architecture

40

Architecture

Experiment network module

Experiment network uses real hardware

NIC split into virtual NICs via single-root IO virtualization
(SR-I0V)
e Physical function (PF):

e Bound to host system
® Manages settings of NIC (bandwidth limits, VLAN settings)

e Virtual function (VF):
e Bound to a specific VM
® Associated with a specific VLAN ID
VLAN handling is transparent for the VM nodes

Bandwidth limits and isolation between VLANs are enforced
by NIC hardware

controller

access

management _

software [management vswitch |
VM

node0 node3| (3

VM VM '8

web c

server nodel| [node2 =

VM VM]

PF PF|VF|VF PFVF[VF] |x

NIC 0 NIC 1 NC2 | £

| physical link I QC.)

s

m [® VLANA © VIANB |§

toast architecture overview

Architecture

40

Measurements — Setup

Al (
> >
LoadGen | \ DuT
< <
J L
Measurement setup
Hardware Testbed / Virtual Testbed toast Testbed
CPU Intel Xeon Silver 4214 (12 cores, 2.2 GHz) Intel Xeon D-1537 (8 cores, 1.7 GHz)
NIC Intel 82599 Intel X710-DA4
Linux Debian buster (Linux kernel v4.19) Debian bullseye (Linux kernel v5.10)

Goal

e Determine the throughput of a Linux router (running on the DuT)
e Direct comparison between three different testbeds:

e Hardware-based testbed (bare-metal nodes, bare-metal network)
e Virtualized testbed (virtual nodes, virtual network)
® Accelerated virtual testbed (toast approach, virtual nodes, SR-IOV-based network)

Measurements — Setup

Measurements
—m— LoadGen - 64B —— DuT - 64B

o

g 2 2
= 0.3

— 15 1.5
(0]

é 1 0.2 1
o 0.5 01 0.5
a0 0 0

0 05 1 15 2 0 01 02 03
Configured Pkt. Rate [Mpps]
Hardware-based testbed Virtual testbed

¥

Hardware-based testbed delivers highest, most-stable performance

Virtual testbed delivers lower, comparatively unstable performance
Accelerated virtual testbed delivers comparatively high and stable performance
toast behaves more similar to real testbed than fully virtualized testbed

0.5

Accelerated virtual testbed (toast)

Measurements

42

Conclusion

Key takeaways
e Modular architecture makes toast a highly flexible testbed platform

e Hardware acceleration techniques, such as SR-IOV, deliver realistic
performance

e toast is not a replacement for a real hardware testbed but a powerful
complement:
e Single-server testbed with low complexity and high affordability
e Stand-in replacement for a real (future) testbed
e Development, training, or teaching facility

ACN server hardware (router project)
e Single-socket AMD EPYC 7763 CPU @ 2.45-3.50 GHz (64 core)
e 1TB RAM
e Intel E810-CQDA2 (2-port NIC, 100 Gbit/s)

Conclusion

43

Bibliography Tum

(1
(2]

(3]

[4]

(5]

N. Zilberman, “An Artifact Evaluation of NDP,” Comput. Commun. Rev., vol. 50, no. 2, pp. 32-36, 2020.

ACM, Artifact Review and Badging Ver. 1.1, 2020. [Online]. Available:
https://www.acm.org/publications/policies/artifact-review-and-badging-current.

S. Gallenmliller, D. Scholz, H. Stubbe, and G. Carle, “The pos framework: A methodology and toolchain for reproducible network
experiments,” in CONEXT '21, Virtual Event, Munich, Germany, December 7 - 10, 2021, ACM, 2021, pp. 259-266. DOI:
10.1145/3485983.3494841.

B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop
on Hot Topics in Networks. HotNets 2010, Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available:
https://doi.org/10.1145/1868447.1868466.

S. Gallenmliller, J. Naab, |. Adam, and G. Carle, “5G QoS: Impact of Security Functions on Latency,” in NOMS 2020 - IEEE/IFIP
Network Operations and Management Symposium, Budapest, Hungary, Apr. 20-24, 2020, |IEEE, 2020, pp. 1-9.

Bibliography 44

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/1868447.1868466

	Motivation
	Reproducibility-as-a-Service
	Reproducibility-as-a-Service
	The Plain Orchestrating Service (pos)
	pos' Methodology
	pos Workflow: Experiment Script
	pos Workflow: Global and Local Variables
	pos Workflow: Setup Script
	pos Workflow: Loop Variables
	pos Workflow: Task Description
	pos Workflow: Result
	pos Workflow: Evaluation
	pos Workflow: Publication
	Recommended Tools
	Data Management Aspects
	Summary
	Mini-Lecture: VLAN
	Mini-Lecture: VXLAN
	ACN Infrastructure: Motivation
	Suitable Environments for Prototyping Testbeds
	Testbed on a Single System
	Architecture
	Measurements — Setup
	Measurements
	Conclusion
	Bibliography
	References

