
Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Advanced Computer Networking (ACN)

IN2097 – WiSe 2025–2026

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller

Christian Dietze, Marcel Kempf, Lorenz Lehle

Chair of Network Architectures and Services
School of Computation, Information and Technology

Technical University of Munich

Motivation

Reproducible experiments

• Everyone agrees that reproducible research is important

• Scientific community tries to incentivize reproducible research:

Motivation 2

Motivation

Reproducible experiments

• Everyone agrees that reproducible research is important

• Scientific community tries to incentivize reproducible research:

Motivation 2

Motivation

Problems with reproducibility

• Two workshops at SIGCOMM conference dedicated to reproducible research:

• SIGCOMM’03: MoMeTools workshop
• SIGCOMM’17: Reproducibility workshop
• Problems remained the same over 14 years

Best solution so far . . .

• Artifact Evaluation Committees & Reproducibility Badges

• Problems:
• High effort
• Potentially low robustness (CCR Apr. ’201)

ACM’s badges awarded by the Artifact Evaluation
Committee

1[1] N. Zilberman, “An Artifact Evaluation of NDP”, Comput. Commun. Rev., vol. 50, no. 2, pp. 32–36, 2020
Motivation 3

Reproducibility-as-a-Service

What is reproducibility?

• 3-stage process according to ACM2:

1. Repeatability: Same team executes experiment using same setup
2. Reproducibility: Different team executes experiment using same setup
3. Replicability: Different team executes experiment using different setup

• Our testbed-driven approach mainly targets the experimental setup

: Focus our effort on repeatability and reproducibility

: Replicability requires additional effort by others

2[2] ACM, Artifact Review and Badging Ver. 1.1, 2020. [Online]. Available: https://www.acm.org/publications/policies/artifact-review-and-badging-current
Reproducibility-as-a-Service 4

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Reproducibility-as-a-Service

How can we limit effort spent on reproducibility?

• Reduce amount of work for artifact evaluators or other researchers

• Make reproducibility part of experiment design

: Automate entire experiment (setup, execution, evaluation)

How can we create robust, reproducible experiments?

• Document all relevant parameters for experiments

• Automate the documentation of experiments

: Well-structured experiment workflow serving as documentation

Reproducibility-as-a-Service 5

The Plain Orchestrating Service (pos)

Our solution to create reproducible research

1. Create a testbed management system

2. Create a well-defined experiment workflow

Achieving Repeatability

• Automation

• Live images
• Researchers must automate configuration
• No residual state between reboots

: Experiments become repeatable

Achieving Reproducibility

• Providing access to experiment infrastructure

• Other researchers can easily (re-)run experiment

: Experiments become reproducible

LoadGen DuT

Controller

Minimal pos experiment topology

The Plain Orchestrating Service (pos) 6

The Plain Orchestrating Service (pos)

Our solution to create reproducible research

1. Create a testbed management system

2. Create a well-defined experiment workflow

Achieving Repeatability

• Automation

• Live images
• Researchers must automate configuration
• No residual state between reboots

: Experiments become repeatable

Achieving Reproducibility

• Providing access to experiment infrastructure

• Other researchers can easily (re-)run experiment

: Experiments become reproducible

LoadGen DuT

Controller

Minimal pos experiment topology

The Plain Orchestrating Service (pos) 6

pos’ Methodology

Setup phase

• Controller manages experiment

• Controller configures experiment nodes (DuT, LoadGen)

• Global / local variables (vars) parameterize setup

Measurement phase

• Repeated execution of measurement script

• Loop variables parameterize each measurement run
• e.g., different packet rates
• data of each run is connected to a specific set of loop vars

Evaluation phase

• Collected results / loop vars used for experiment evaluation

• Automated experiment release (git repository, website)

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos’ Methodology 7

pos Workflow: Experiment Script

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Experiment Script 8

pos Workflow: Experiment Script

Experiment Script

• Command line tool: pos

• Specifies the high-level workflow:

1. Node allocation
2. Variable loading
3. Node config and reboot
4. Node setup
5. Experiment execution
6. Node de-allocation

allocate experiment nodes

pos allocations allocate --duration 10 $DUT $LOADGEN

load variables

pos allocations set_variables $DUT --as-global ./global -variables.yml # global vars

pos allocations set_variables $DUT ./ node1/node1.yml # local vars

pos allocations set_variables $LOADGEN ./node2/node2.yml # local vars

pos allocations set_variables $DUT --as-loop ./loop -variables.yml # loop vars

configure & reboot nodes

pos nodes image $DUT debian -bullseye

pos nodes image $LOADGEN debian -bullseye

pos nodes reset $DUT --non -blocking

pos nodes reset $LOADGEN --non -blocking

setup nodes

pos commands launch --infile node1/setup.sh --queued $DUT

pos commands launch --infile node2/setup.sh --queued $LOADGEN

execute experiment on nodes

pos commands launch --infile node1/measurement.sh --queued --loop $DUT

pos commands launch --infile node2/measurement.sh --blocking --loop $LOADGEN

free nodes

pos allocations free $DUT

pos Workflow: Experiment Script 9

pos Workflow: Global and Local Variables

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Global and Local Variables 10

pos Workflow: Global and Local Variables

Variables

• Global variables are available on all participat-
ing nodes

• Local variables are available only on specific
nodes

• Variables format:
• YAML
• JSON

repo:

moongen: ’https :// github.com/emmericp/MoonGen ’

commit: ’7746 ff2f0afdbb222aa9cb220b48355e2d19552b ’

Listing 1: Global vars

interface:

rx: ’1’

tx: ’2’

Listing 2: Local vars for LoadGen

interface:

rx: ’0’

tx: ’2’

Listing 3: Local vars for DuT

pos Workflow: Global and Local Variables 11

pos Workflow: Setup Script

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Setup Script 12

pos Workflow: Setup Script

Setup Script

• Setup script for individual nodes

• Typical high-level workflow:

1. Get variables
2. Install dependencies
3. Configure system

• Format of setup script:
• Shell scripts for simple setups
• Ansible to execute complex configuration

scripts
• Any script that can be run on experiment

node

get global variables

GIT_REPO=$(pos_get_variable --global repo/moongen)

COMMIT_ID=$(pos_get_variable --global repo/commit)

clone repo and install MoonGen

git clone --recursive $GIT_REPO /root/moongen

cd /root/moongen

git checkout $COMMIT_ID

./build.sh

./setup -hugetlbfs.sh

Listing 4: Setup script for load generator and DuT

pos Workflow: Setup Script 13

pos Workflow: Loop Variables

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Loop Variables 14

pos Workflow: Loop Variables

Loop Variables

• Variables to parameterize the actual mea-
surements

• Typically lists of parameters

• Cross product is automatically created by
pos to investigate each possible combina-
tion of the specified parameters

• Variables format:
• YAML
• JSON

pkt_sizes: [

64,

128,

256,

512,

768,

1024,

1280,

1518

]

rates: [

1,

2,

...,

10

]

Listing 5: Loop variables to parameterize the following measurements

pos Workflow: Loop Variables 15

pos Workflow: Task Description

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Task Description 16

pos Workflow: Task Description

Task Description

• pos executes the task description once for
each set of parameters

• Typical high-level workflow:

1. Get (loop) variables
2. Wait for other nodes (pos_sync)
3. Perform actual measurement
4. Upload results (pos_upload)

• Format of setup script:
• Shell scripts for simple setups
• Ansible to execute complex configuration

scripts
• Any script that can be run on experiment

node

get global variables

RX=$(pos_get_variable --local interface/rx)

TX=$(pos_get_variable --local interface/tx)

PKT_SZ=$(pos_get_variable --loop pkt_sizes)

RATE=$(pos_get_variable --loop rates)

wait for other hosts

pos_sync

start load generator

cd /root/moongen

pos_run --loop loadgen -- \

MoonGen l3-load -latency.lua -s $PKT_SZ \

-r $RATE $RX $TX -f rates.csv

sleep 120

pos_kill loadgen

upload results

pos_upload --loop rates.csv

Listing 6: Task script for the load generator

pos Workflow: Task Description 17

pos Workflow: Task Description

Task Description

• pos executes the task description once for
each set of parameters

• Typical high-level workflow:

1. Get (loop) variables
2. Wait for other nodes (pos_sync)
3. Perform actual measurement
4. Upload results (pos_upload)

• Format of setup script:
• Shell scripts for simple setups
• Ansible to execute complex configuration

scripts
• Any script that can be run on experiment

node

get global variables

RX=$(pos_get_variable --local interface/rx)

TX=$(pos_get_variable --local interface/tx)

#wait for other hosts

pos_sync

start the forwarder

cd /root/moongen

pos_run --loop fwd -- MoonGen l2-forward.lua $RX $TX

sleep 120

pos_kill fwd

Listing 9: Task script for the DuT

pos Workflow: Task Description 17

pos Workflow: Result

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Result 18

pos Workflow: Result

Result

• Result files are collected on management
host

• Result files are annotated with specific
loop parameter set

• Format:
• Command line output
• CSV
• Arbitrary formats possible

"timestamp";"rx_mpps";"tx_mpps";

1666295702860;0.0;0.0;

1666295703857;0.0;0.0;

1666295704856;3.01;2.97;

1666295705859;12.49;12.47;

1666295706861;12.47;12.48;

1666295707858;12.46;12.45;

1666295708859;12.48;12.49;

1666295709862;12.47;12.48;

Listing 10: Example output file containing generated and received throughput

pos Workflow: Result 19

pos Workflow: Evaluation

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Evaluation 20

pos Workflow: Evaluation

Evaluation

• Automated evaluation is essential part of
experiment design

• We propose to use Jupyter notebooks for
evaluation

• Jupyter supports a variety of different
programming languages

• Jupyter notebooks can be nicely evalu-
ated manually (via browser)

• Jupyter notebooks can be run on com-
mand line automatically

Jupyter notebook evaluation

pos Workflow: Evaluation 21

pos Workflow: Publication

Run N
Loop
Vars N

Task
Description

Results N

Run II
Loop
Vars II

Task
Description

Results II

Run I

DuT Controller LoadGen

Experiment

Global
Vars

Setup Setup

Local
Vars

Local
Vars

Loop
Vars I

Task
Description

Task
Description

Results I

Evaluation

Publication

S
et
up

P
ha
se

M
ea
su
re
m
en
t
P
ha
se

E
va
lu
at
io
n

P
ha
se Script

Parameters
Result Data

pos workflow

pos Workflow: Publication 22

pos Workflow: Publication

Publication

• Well-defined workflow:
• Documentation for people familiar with

workflow
• Release of experiment and results as

repository
• Automated processing of experimental

data as website

Website generated by pos experiment workflow

pos Workflow: Publication 23

Recommended Tools

• Git repository for scripts
• Can be used for development of experiments
• Valuable benefit: keeps track of different versions

• MoonGen for packet generation
• Any software tool can be installed/used in experiments
• We rely mostly on MoonGen for generating test traffic
• Its high precision and accuracy support reproducible experiments

• Ansible for configuration management
• Setup script can be done in any language
• For simple setups we typically use shell scripts
• For complex setups we recommend Ansible

• Jupyter for evaluation
• Evaluation scripts can be done in any language
• Jupyter Notebooks are widely used
• Heavily used by other testbeds (e.g., Chameleon)
• Alternative tool CWL (Common Workflow Language), mainly used in ML/AI do-

main

Jason Long / CC BY 3.0

Recommended Tools 24

Data Management Aspects

Additional aspects to consider

• Reproducibility of experiments is important but not sufficient

• Data management aspects:
• Experimental artifacts must support the FAIR data principles
• pos controller offers enough flexibility to employ well-known data and metadata formats
• pos controller also offers the possibility to automate data collection

Data Management Aspects 25

Data Management Aspects

FAIR

Graphics: Sangya Pundir / CC BY-SA 4.0

• Findable:
• Automated generation of metadata
• Structured experimental workflow

• Accessible:
• Well-known formats (pcaps, JSON, YAML, Jupyter)
• Well-known tools (git, Gitlab, GitHub)

• Interoperable:
• Well-known formats (pcaps, JSON, YAML, Jupyter)
• Well-known tools (git, Gitlab, GitHub)

• Reusable:
• Structure that documents experiments
• Repeatable, modifiable and publishable experiments

Data Management Aspects 26

Data Management Aspects

FAIR

Graphics: Sangya Pundir / CC BY-SA 4.0

• Findable:
• Automated generation of metadata
• Structured experimental workflow

• Accessible:
• Well-known formats (pcaps, JSON, YAML, Jupyter)
• Well-known tools (git, Gitlab, GitHub)

• Interoperable:
• Well-known formats (pcaps, JSON, YAML, Jupyter)
• Well-known tools (git, Gitlab, GitHub)

• Reusable:
• Structure that documents experiments
• Repeatable, modifiable and publishable experiments

Data Management Aspects 26

Summary

• pos4 is . . .
• a testbed orchestration service, and
• an experiment methodology.

• Methodology makes experiments . . .
• repeatable as everything is automated,
• reproducible as others can re-run the automated pos experiments, and
• easier to replicate as the experiment scripts document experiments.

: pos reduces the effort to create reproducible experiments.

: pos complements the ACM awards—it does not replace them.

• Example experiment:
• Repository: https://github.com/gallenmu/pos-artifacts
• Website: https://gallenmu.github.io/pos-artifacts

Website generated by pos experiment workflow

4[3] S. Gallenmüller et al., “The pos framework: A methodology and toolchain for reproducible network experiments”, in CoNEXT ’21, Virtual Event, Munich,
Germany, December 7 - 10, 2021, ACM, 2021, pp. 259–266. DOI: 10.1145/3485983.3494841

Summary 27

https://github.com/gallenmu/pos-artifacts
https://gallenmu.github.io/pos-artifacts
https://doi.org/10.1145/3485983.3494841

Summary

• pos4 is . . .
• a testbed orchestration service, and
• an experiment methodology.

• Methodology makes experiments . . .
• repeatable as everything is automated,
• reproducible as others can re-run the automated pos experiments, and
• easier to replicate as the experiment scripts document experiments.

: pos reduces the effort to create reproducible experiments.

: pos complements the ACM awards—it does not replace them.

• Example experiment:
• Repository: https://github.com/gallenmu/pos-artifacts
• Website: https://gallenmu.github.io/pos-artifacts

Website generated by pos experiment workflow

4[3] S. Gallenmüller et al., “The pos framework: A methodology and toolchain for reproducible network experiments”, in CoNEXT ’21, Virtual Event, Munich,
Germany, December 7 - 10, 2021, ACM, 2021, pp. 259–266. DOI: 10.1145/3485983.3494841

Summary 27

https://github.com/gallenmu/pos-artifacts
https://gallenmu.github.io/pos-artifacts
https://doi.org/10.1145/3485983.3494841

Mini-Lecture: VLAN
Virtual Local Area Network

General Information

• Standardized in IEEE 802.1Q

• Incorporated inside the Ethernet header

• Tunnel endpoints are managed switches

• One physical network to provide multiple separate virtualized Layer 2 networks

Use cases

• Separate “secure” network from “public” network (e. g. CCTV cams)

• Separate different business units (Development, HR, Finances, . . .)

• Characterize traffic (see QoS)

Mini-Lecture: VLAN 28

Mini-Lecture: VLAN
Virtual Local Area Network Header Layout

Preamble

S
FD Destination MAC Source MAC VLAN Type Data (L3-PDU) FCS (CRC-32)

7 B 1 B 6 B 6 B 4 B 2 B 42 – 1500 B 4 B

Ethernet Frame 64 − 1522 B

TPID

P
C

P

D
E

I

VID

2 B 2 B
Field Length

PCP 3 Bit
DEI 1 Bit
VID 12 Bit

TCI

• VLAN header is inserted between source MAC and ethertype

• Ethernet frames having a VLAN header are called tagged (normal frames are called untagged)

• VLAN header consists of 4 fields:
• TPID: “Tag Protocol Identifier”, always 0x8100, used to indicate that a frame is tagged
• PCP: “Priority Code Point”, prioritization of traffic, can be used to prioritize different classes of traffic (c.f. IEEE 802.1p)
• DEI: “Drop Eligible Indicator”, describes if the frame may be dropped in case of congestion
• VID: “VLAN Identifier”, identifies to which VLAN this frame belongs, from 1 to 4094 (0 and 4095 reserved), most important field

Mini-Lecture: VLAN 29

Mini-Lecture: VLAN
Access Ports and Trunk Ports

Access Ports

• Traffic sent to / from this port is not tagged

• Network connected to an access port is logically in one single VLAN

• “The port you connect your desktop to”

Trunk Ports

• Can send / receive traffic from multiple VLANs

• Tagged frames are forwarded unchanged

• Every untagged frame is tagged using the native VLAN

• Typical switch-to-switch link

• Use with VLAN-aware hosts (VLAN must be configured on the end host)

Mini-Lecture: VLAN 30

Mini-Lecture: VLAN
Example network

CCTV Camera CCTV Camera

Internet

VLAN 1 (untagged)

VLAN 2 (untagged)

VLAN 3 (untagged)

Mixed (tagged)

• Switch-to-Switch ports are trunk ports

• Switch-to-Server port is a trunk port

• All other switch ports are access ports

Mini-Lecture: VLAN 31

Mini-Lecture: VLAN
Q-in-Q (stacked VLANs)

Encapsulate VLANs in VLANs

• Defined in IEEE 802.1ad

• Two VLAN headers instead of one (Dst MAC | Src MAC | VLAN | VLAN | Ethertype | ... | FCS)

• Total of 4094 · 4094 = 16760836 VIDs

Use Case: 4094 VIDs are not sufficient

• Large networks may need more than 4094 VLANs

• Expanding the VID space is enough

Use Case: Customer network on top of provider network

• ISPs or data centers use one VLAN per customer

• Customer are isolated from each other

• Customers want to use VLANs themselves

• “Lower” VLAN header is managed by the datacenter / provider

• “Upper” VLAN header is managed by the customer

Mini-Lecture: VLAN 32

Mini-Lecture: VXLAN
Motivation - Virtual eXtensible Local Area Network
General Information

• Standardized in 2014 in RFC 7348 (rather short standard)
• Builds layer 2 overlay network on top of a layer 4 (UDP) underlay network
• Has 24 bit VXLAN network identifier (VNI), which allows 16 million virtualized networks
• Suitable to reach VMs in large data centers / “the cloud”

Problem Statement

• Servers host a large number of VMs
• Each VM has its own MAC address
• VMs need to connect to VMs on other servers
• Switch needs to handle thousands of MAC addresses of VMs

Another Problem Statement

• Provider and clients both want to use VLANs
• Provider allocates VLANs to clients
• Very limited amount of VLANs per client
• Clients may misconfigure the VMs
• Also solved by Q-in-Q (stacked VLANs), but this is not always applicable

Mini-Lecture: VXLAN 33

Mini-Lecture: VXLAN
Approach

Ethernet Header

14 B

IP Header

20/40 B

UDP Header

8 B

VXLAN Header

8 B

L2 Frame (Payload)

variable size

Flags

1 B

Reserved

3 B

VNI

3 B

Reserved

1 B

Encapsulation Strategy

• Encapsulate original layer 2 frame inside UDP

• Virtual networks enumerated by VXLAN Network Identifier (VNI)

UDP header fields

• Source Port: Hash of inner 5-tuple great for load balancing

• Destination Port: Always 4789

• Length: Length of layer 2 frame + UDP header size

Mini-Lecture: VXLAN 34

Mini-Lecture: VXLAN
Benefits

What makes VXLAN a “good” tunneling protocol?

• Builds on top of a layer 3 with only multiplexing on layer 4 (done by UDP)
• Network may belong to an ISP
• “The Internet” is layer 3
• VXLAN can be used over the Internet, VLAN cannot

• Layer 3 routing protocols can be used (BGP, OSPF, . . .)

• Better multipath support

Mini-Lecture: VXLAN 35

Mini-Lecture: VXLAN
Example network

CCTV Camera CCTV Camera

Internet

VNI 1

VNI 2

VNI 3

Layer 3 underlay network

• Links marked as VNI 1/2/3 contain normal Ethernet frames
• Layer 3 network is some arbitrary layer 3 network (e.g. an ISP)
• The two switches encapsulate (/ decapsulate) to (/ from) the VXLAN frames
• Remark: Real world VXLAN-capable switches violate strict layering and use L3 information

Mini-Lecture: VXLAN 36

ACN Infrastructure: Motivation

Hardware testbed

• Hardware typically offers the best performance

• Router project:
• 4 machines for 12 setups
• requires 48 hosts in total

: Our hardware testbed is not large enough to accommodate all students par-
ticipating

Hardware testbed

ACN Infrastructure: Motivation 37

Suitable Environments for Prototyping Testbeds

Flexibility Scalability Interactivity Performance

Emulation [4]

+ + + - -

Simulation

+ + + - - -

Real hardware

- - - - + + +

Requirements and their relative weight

• Flexibility: Network topologies are more restricted on real hardware

• Scalability: Number of nodes and links is typically limited on real hardware

• Interactivity: Simulation environments do not behave like real systems from a user’s perspective

• Performance: Emulation and simulation hardly deliver the performance of real hardware

: Properties of emulation and simulation environments differ significantly from real hardware

: We need a tool that better approximates real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds

Flexibility

Scalability Interactivity Performance

Emulation [4] +

+ + - -

Simulation +

+ + - - -

Real hardware - -

- - + + +

Requirements and their relative weight

• Flexibility: Network topologies are more restricted on real hardware

• Scalability: Number of nodes and links is typically limited on real hardware

• Interactivity: Simulation environments do not behave like real systems from a user’s perspective

• Performance: Emulation and simulation hardly deliver the performance of real hardware

: Properties of emulation and simulation environments differ significantly from real hardware

: We need a tool that better approximates real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds

Flexibility Scalability

Interactivity Performance

Emulation [4] + +

+ - -

Simulation + + +

- - -

Real hardware - - - -

+ + +

Requirements and their relative weight

• Flexibility: Network topologies are more restricted on real hardware

• Scalability: Number of nodes and links is typically limited on real hardware

• Interactivity: Simulation environments do not behave like real systems from a user’s perspective

• Performance: Emulation and simulation hardly deliver the performance of real hardware

: Properties of emulation and simulation environments differ significantly from real hardware

: We need a tool that better approximates real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds

Flexibility Scalability Interactivity

Performance

Emulation [4] + + +

- -

Simulation + + + - -

-

Real hardware - - - - +

+ +

Requirements and their relative weight

• Flexibility: Network topologies are more restricted on real hardware

• Scalability: Number of nodes and links is typically limited on real hardware

• Interactivity: Simulation environments do not behave like real systems from a user’s perspective

• Performance: Emulation and simulation hardly deliver the performance of real hardware

: Properties of emulation and simulation environments differ significantly from real hardware

: We need a tool that better approximates real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds

Flexibility Scalability Interactivity Performance

Emulation [4] + + + - -
Simulation + + + - - -
Real hardware - - - - + + +

Requirements and their relative weight

• Flexibility: Network topologies are more restricted on real hardware

• Scalability: Number of nodes and links is typically limited on real hardware

• Interactivity: Simulation environments do not behave like real systems from a user’s perspective

• Performance: Emulation and simulation hardly deliver the performance of real hardware

: Properties of emulation and simulation environments differ significantly from real hardware

: We need a tool that better approximates real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds

Flexibility Scalability Interactivity Performance

Emulation [4] + + + - -
Simulation + + + - - -
Real hardware - - - - + + +

Requirements and their relative weight

• Flexibility: Network topologies are more restricted on real hardware

• Scalability: Number of nodes and links is typically limited on real hardware

• Interactivity: Simulation environments do not behave like real systems from a user’s perspective

• Performance: Emulation and simulation hardly deliver the performance of real hardware

: Properties of emulation and simulation environments differ significantly from real hardware

: We need a tool that better approximates real hardware

[4] B. Lantz et al., “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop on Hot Topics in Networks. HotNets 2010,
Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available: https://doi.org/10.1145/1868447.1868466

Suitable Environments for Prototyping Testbeds 38

https://doi.org/10.1145/1868447.1868466

Testbed on a Single System

Our solution

• We propose a testbed design that relies on virtualization

: Testbed on a single system (toast)

Advantages

• Interactivity: VMs behave like real systems from a user’s perspective

• Performance: VMs can deliver near-native performance (if configured correctly [5])

• Flexibility: Virtual network topologies are highly flexible

• Scalability: Multiple VMs can be hosted on a single server

[5] S. Gallenmüller et al., “5G QoS: Impact of Security Functions on Latency”, in NOMS 2020 - IEEE/IFIP Network Operations and Management Symposium,
Budapest, Hungary, Apr. 20-24, 2020, IEEE, 2020, pp. 1–9

Testbed on a Single System 39

Architecture

Access module

• Access control module separated from testbed implementa-
tion

• Possible access methods:
• Secure Shell (SSH)
• Webbrowser

• Improved security:
• Widely used authentication method (OpenID)
• User data is kept separate from testbed at the authentication

service provider
• OpenID authentication service can be hosted locally or exter-

nally
• External providers available (fast & easy to set up):

• GitHub, GitLab, Google, etc.

ac
ce

ss

co
nt

ro
lle

r

ex
p.

no
de

s
ex

p.
ne

tw
or

k

web
server

management
software

VM
management vswitch

node0
VM

node1
VM

node2
VM

node3
VM

NIC 0
PF

physical link
NIC 1

PF VF VF

NIC 2
PF VF VF

Internet

VLAN A VLAN B

toast architecture overview

Architecture 40

Architecture

Controller module

• Testbed controller is fully independent from hosting server:
• Specific OS or configuration for testbed controller becomes

possible
• Testbed controller inside the VM can be changed easily
• Increased security through additional barrier between host

server and virtualized testbed controller

• For toast, we currently use the pos testbed controller [3]

[3] S. Gallenmüller et al., “The pos framework: A methodology and toolchain for reproducible

network experiments,” in CoNEXT ’21, Virtual Event, Munich, Germany, December 7 - 10,

2021, ACM, 2021, pp. 259–266. DOI: 10.1145/3485983.3494841

ac
ce

ss
co

nt
ro

lle
r

ex
p.

no
de

s
ex

p.
ne

tw
or

k

web
server

management
software

VM
management vswitch

node0
VM

node1
VM

node2
VM

node3
VM

NIC 0
PF

physical link
NIC 1

PF VF VF

NIC 2
PF VF VF

Internet

VLAN A VLAN B

toast architecture overview

Architecture 40

https://doi.org/10.1145/3485983.3494841

Architecture

Experiment nodes module

• Each experiment nodes realized as its own VM

• Virtual switch connects the experiment nodes to the testbed
controller

• Virtualization allows high flexibility for experiment nodes:
• Multiple nodes can be virtualized on a single server
• Different kinds of nodes can be virtualized depending on the

resource allocation:
• VM resources can be limited to virtualize resource constrained

devices
• High-performance VMs are allowed to allocate more resources

ac
ce

ss
co

nt
ro

lle
r

ex
p.

no
de

s

ex
p.

ne
tw

or
k

web
server

management
software

VM
management vswitch

node0
VM

node1
VM

node2
VM

node3
VM

NIC 0
PF

physical link
NIC 1

PF VF VF

NIC 2
PF VF VF

Internet

VLAN A VLAN B

toast architecture overview

Architecture 40

Architecture

Experiment network module

• Experiment network uses real hardware

• NIC split into virtual NICs via single-root IO virtualization
(SR-IOV)

• Physical function (PF):
• Bound to host system
• Manages settings of NIC (bandwidth limits, VLAN settings)

• Virtual function (VF):
• Bound to a specific VM
• Associated with a specific VLAN ID

• VLAN handling is transparent for the VM nodes

• Bandwidth limits and isolation between VLANs are enforced
by NIC hardware

ac
ce

ss
co

nt
ro

lle
r

ex
p.

no
de

s
ex

p.
ne

tw
or

k

web
server

management
software

VM
management vswitch

node0
VM

node1
VM

node2
VM

node3
VM

NIC 0
PF

physical link
NIC 1

PF VF VF

NIC 2
PF VF VF

Internet VLAN A VLAN B

toast architecture overview

Architecture 40

Measurements — Setup

LoadGen DuT
▶
◀

▶
◀

Measurement setup

Hardware Testbed / Virtual Testbed toast Testbed

CPU Intel Xeon Silver 4214 (12 cores, 2.2 GHz) Intel Xeon D-1537 (8 cores, 1.7 GHz)
NIC Intel 82599 Intel X710-DA4
Linux Debian buster (Linux kernel v4.19) Debian bullseye (Linux kernel v5.10)

Goal

• Determine the throughput of a Linux router (running on the DuT)

• Direct comparison between three different testbeds:
• Hardware-based testbed (bare-metal nodes, bare-metal network)
• Virtualized testbed (virtual nodes, virtual network)
• Accelerated virtual testbed (toast approach, virtual nodes, SR-IOV-based network)

Measurements — Setup 41

Measurements

LoadGen - 64B DuT - 64B

0 0.5 1 1.5 2
0

0.5

1

1.5

2

P
kt
.
R
at
e
[M

p
p
s]

Hardware-based testbed

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Configured Pkt. Rate [Mpps]

Virtual testbed

0 0.5 1
0

0.5

1

1.5

2

Accelerated virtual testbed (toast)

• Hardware-based testbed delivers highest, most-stable performance

• Virtual testbed delivers lower, comparatively unstable performance

• Accelerated virtual testbed delivers comparatively high and stable performance

: toast behaves more similar to real testbed than fully virtualized testbed

Measurements 42

Conclusion

Key takeaways

• Modular architecture makes toast a highly flexible testbed platform

• Hardware acceleration techniques, such as SR-IOV, deliver realistic
performance

• toast is not a replacement for a real hardware testbed but a powerful
complement:

• Single-server testbed with low complexity and high affordability
• Stand-in replacement for a real (future) testbed
• Development, training, or teaching facility

ACN server hardware (router project)

• Single-socket AMD EPYC 7763 CPU @ 2.45–3.50 GHz (64 core)

• 1 TB RAM

• Intel E810-CQDA2 (2-port NIC, 100 Gbit/s)

Conclusion 43

Bibliography

[1] N. Zilberman, “An Artifact Evaluation of NDP,” Comput. Commun. Rev., vol. 50, no. 2, pp. 32–36, 2020.

[2] ACM, Artifact Review and Badging Ver. 1.1, 2020. [Online]. Available:
https://www.acm.org/publications/policies/artifact-review-and-badging-current.

[3] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos framework: A methodology and toolchain for reproducible network
experiments,” in CoNEXT ’21, Virtual Event, Munich, Germany, December 7 - 10, 2021, ACM, 2021, pp. 259–266. DOI:
10.1145/3485983.3494841.

[4] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid Prototyping for Software-Defined Networks,” in ACM Workshop
on Hot Topics in Networks. HotNets 2010, Monterey, CA, USA - October 20 - 21, 2010, ACM, 2010, p. 19. [Online]. Available:
https://doi.org/10.1145/1868447.1868466.

[5] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G QoS: Impact of Security Functions on Latency,” in NOMS 2020 - IEEE/IFIP
Network Operations and Management Symposium, Budapest, Hungary, Apr. 20-24, 2020, IEEE, 2020, pp. 1–9.

Bibliography 44

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/1868447.1868466

	Motivation
	Reproducibility-as-a-Service
	Reproducibility-as-a-Service
	The Plain Orchestrating Service (pos)
	pos' Methodology
	pos Workflow: Experiment Script
	pos Workflow: Global and Local Variables
	pos Workflow: Setup Script
	pos Workflow: Loop Variables
	pos Workflow: Task Description
	pos Workflow: Result
	pos Workflow: Evaluation
	pos Workflow: Publication
	Recommended Tools
	Data Management Aspects
	Summary
	Mini-Lecture: VLAN
	Mini-Lecture: VXLAN
	ACN Infrastructure: Motivation
	Suitable Environments for Prototyping Testbeds
	Testbed on a Single System
	Architecture
	Measurements — Setup
	Measurements
	Conclusion
	Bibliography
	References

