Technical University of Munich

Advanced Computer Networking (ACN)

IN2097 — WiSe 2025-2026
Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmiiller

Christian Dietze, Marcel Kempf, Lorenz Lehle

Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Transport Layer Protocols

TCP
Basics
Flow Control

Congestion Control
UDP
SCTP

Quic
QUIC Features
IETF QUIC
Analysis

Applications

Bibliography

Transport Layer Protocols

Basics
What is TCP?

e Short for Transmission Control Protocol

e Defined in RFC 793 [1] and many more RFCs

e Connection-oriented service

® In-sequence delivery of byte stream — Stream-oriented
e Reliability properties

e Bit error detection
e TSDU (Transport Service Data Unit) loss detection and retransmission

e Provides Flow Control (sender will not overwhelm receiver)
e Provides Congestion Control (sender will not overwhelm network)

When is it used?

o HTTP
o FTP
 SMTP/POP3/IMAP
o SSL/TLS

o SSH, BGP, Backups, ...

Transport Layer Protocols — TCP

Basics
Properties

Point-to-Point
® One sender, one receiver
Reliable
e Everything that was sent will be received at some point
in time
In-Order
e Sending order is receiving order
Stream-oriented
e Data is one continuous stream, no message boundaries
e Example:
® send("Hello"); send("World");

® recv()

"HelloWorld", "Hello", ™", "Hell"
e not possible:

"World", "HeWorld"

Connection-oriented
e Handshakes, holding state on both sides, tear-downs

e 3-way handshake
SYN — SYN/ACK — ACK
FIN — FIN/ACK — ACK

Flow controlled

e Sender can only send as much as the receiver can utilize
Congestion controlled

e Sender throttles bandwidth to not overwhelm network

Transport Layer Protocols — TCP

Basics
TCP Header
0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0B Source Port r Destination Port
4B Sequence Number
8B Acknowledgement Number
128 Offset Reserved [e]g]a]e]z]z] Window
16B Checksum Urgent Pointer
20B Options (0 or more multiples of 4 Byte)
Data
e~ AT ——— N —]

e Source Port: Identifier for sending application e Flags:
e Destination Port: Identifier for receiving application ® URG: Urgent pointer is set
. e ACK: Acknowledgment is set
. Sequer_]ce Number: Identifier for segment, byte sequence num- o PSH: Push, OS should ot buffer
ber of first byte of the segment e RST: Reset connection (instant termination)
e Acknowledgment Number: Next expected sequence number ® SYN: Synchronize using handshake packets
e FIN: Finish, start to tear-down connection

e Offset: Offset to start of payload (header length including op-
tions) e Checksum: 16 bit one’s complement of the one’s complement

sum of all 16-bit words in TCP pseudo-header and payload
e Urgent Pointer: Points to urgent data

e Reserved: Reserved for future use

e Window: Size of receiver window (buffer size of receiver), used
for Flow Control e Options: Optional extensions

Transport Layer Protocols — TGP 4

Basics
Basic Operation

Sender:

e Sends segments
e Expects acknowledgments

How does the sender know if a segment is lost?

e ACK s not received within a certain time interval
e Timeout occurs
e Sender retransmits segment
e Takes at least timeout value + 1 RTT until lost segment is acknowledged
e Multiple duplicate ACKs arrive
Can be caused by reordering or packet loss
Segments arrived out-of-order, or at least one segment was lost
3 duplicate ACKs = Sender performs Fast Retransmit
Remark: 3 duplicate ACKs 3 lost segments
One or more lost segments always cause duplicate ACKs as long as there are subsequent segments

Transport Layer Protocols — TCP

Basics
TCP Round Trip and Timeout
How to set the TCP timeout value?
e Jonger than RTT, but RTT varies
® too short: premature timeout

® unnecessary retransmissions (Spurious Retransmission)
e too long: slow reaction to segment loss

How to estimate RTT

Transport Layer Protocols — TCP

Basics
TCP Round Trip and Timeout

How to set the TCP timeout value?

e Jonger than RTT, but RTT varies
® too short: premature timeout

® unnecessary retransmissions (Spurious Retransmission)
e too long: slow reaction to segment loss

How to estimate RTT

e SampleRTT: measured time from segment transmission until ACK receipt
® ignore retransmissions

e SampleRTT will vary, want estimated RTT “smoother”
e average several recent measurements, not just current SampleRTT

EstimatedRTT = (1 — «) - EstimatedRTT + « - SampleRTT

e (Called: Exponential weighted moving average (EWMA)
e influence of past sample decreases

e more weight on recent samples than on older samples
e typical value: « = 0.125

Transport Layer Protocols — TCP

Basics

Exponential weighted moving average (EWMA)

200

150

100

RTT [ms]

50

I
— RTT
— EWMA

o

80

I I
100 120
Time [s]

I
140

I
160

I
180

I I
200 220

Transport Layer Protocols — TCP

Basics TI'ITI
TCP Options
Maximum Segment Size Option (RFC 6691)

® Announce MSS during handshake: accept no segments larger than MSS
e Can be completely independently in each direction
e MSS counts only data octets in the segment, it does not count the TCP/IP header.

TCP Timestamp Option (RFC 7323)

e Prevents ambiguity of ACKs (is the ACK from the original packet or the retransmission?)
e Sender and receiver have a (virtual) "timestamp clock"
e Append two "timestamps" to each sent TCP segment:

e Timestamp Value (TSVal): current "timestamp” when the packet is sent

e Timestamp Echo Reply (TSecr): latest TSVal received before sending the packet

e On receive compute: TSecr — current timestamp

Selective Acknowledgment Options (RFC 2018) TCP Window Scale Option (RFC 7323)

e TCP only provides feedback about the next expected segment e 2B windows size field — at most about 65 kB re-

e What if each second segment gets lost? — many RTTs to retransmit every- ceive buffer

thing e Scale the announced window by a factor (shift the

e Goal: provide more information about received/ missing segments window)

Transport Layer Protocols — TCP 8

Flow Control

What is Flow Control?

Receiver may be a resource limited device

OS kernel buffers segments for applications to process

Buffer is of limited (maybe small) size

If the buffer is full: incoming segments are dropped

Flow Control sets a maximum of data the sender is allowed to send
Implemented by using the window field in the header

Used in order to avoid overwhelming of receiver buffer

Transport Layer Protocols — TCP

Flow Control

What is Flow Control?

Receiver may be a resource limited device

OS kernel buffers segments for applications to process

Buffer is of limited (maybe small) size

If the buffer is full: incoming segments are dropped

Flow Control sets a maximum of data the sender is allowed to send
Implemented by using the window field in the header

Used in order to avoid overwhelming of receiver buffer

Sender application is blocked

Sender

2k
B, SEQ . 0
0
ACK = ZOOO,W\N = 400
4kB
L SEQ < 2000
=0
ACK = 6000,W\N

ACK = GOOO‘W\N ~ 5000
2kB
ACK = SOOO‘W\N ~ 3000

m

Buffer (6 kB)

Receiver

(S
[

Application reads 5kB

[I

[

Transport Layer Protocols — TCP 9

Congestion Control
Principles of Congestion Control

Definition:

e Informally: “Too many sources sending too much data too fast for the network to handle”
e Different from flow control (which handles overload at the recipient)

Manifestations:

e |ost packets (buffer overflow at routers)
e Long delays (router buffer queues fill up)

Transport Layer Protocols — TCP

10

Congestion Control
Goals and problems

What do we hope for?

Reasonable behavior in case of high load of network
Without controlling amount of outgoing data, capacity may drop dramatically because of congestion collapse

Fair resource sharing

Criteria: effective, simple, robust, end-host driven

max ——

capacity

ideal

Flow and congestion control

Without congestion control

Congestion
collapse

Y

Load of system

Transport Layer Protocols — TCP

Congestion Control TI_ITI
Operation Point — Terms and Definitions

Every path can be described with two parameters:

® Round-trip propagation delay: RTprop = >, RTprop; with RTprop; being the delay of link i

50 Mbit/s 20 Mbit/s 30 Mbit/s

20ms (& 50ms (S 30ms
= = = -

Transport Layer Protocols — TCP 12

Congestion Control
Operation Point — Terms and Definitions

Every path can be described with two parameters:

® Round-trip propagation delay: RTprop = >, RTprop; with RTprop; being the delay of link i
e Bottleneck bandwidth: BtIBw = min(BtIBw;) with BtIBw; being the bandwidth of link i

RTprop = 20ms + 50 ms + 30 ms = 100 ms

50 Mbit/s 20 Mbit/s 30 Mbit/s

20ms (& 50ms (S 30ms
= = = -

Transport Layer Protocols — TCP

Congestion Control
Operation Point — Terms and Definitions
Every path can be described with two parameters:

® Round-trip propagation delay: RTprop = >, RTprop; with RTprop; being the delay of link i
e Bottleneck bandwidth: BtIBw = min(BtIBw;) with BtIBw; being the bandwidth of link i
L]
]

BtineckBufSize: buffer size at the bottleneck link
Amount inflight: data which is sent but not acknowledged

RTprop = 20 ms + 50 ms + 30 ms = 100 ms
BtiBw = min(50 Mbit/s, 20 Mbit/s, 30 Mbit/s) = 20 Mbit/s
BDP = 100 ms - 20 Mbit/s = 2000 kbit

50 Mbit/s 20 Mbit/s 30 Mbit/s

20ms (& 50ms (S 30ms
= = = -

Transport Layer Protocols — TCP

Congestion Control TI_ITI

Operation Point — Terms and Definitions
Every path can be described with two parameters:

Round-trip propagation delay: RTprop = >, RTprop; with RTprop; being the delay of link i
Bottleneck bandwidth: BtIBw = min(BtIBw;) with BtIBw; being the bandwidth of link i
BtineckBufSize: buffer size at the bottleneck link

Amount inflight: data which is sent but not acknowledged

Bandwidth-delay product: BDP = RTprop - BtIBw

"How much data can fit on a link with bandwidth BtlBw and propagation delay RTprop"

RTprop = 20 ms + 50 ms + 30 ms = 100 ms
BtiBw = min(50 Mbit/s, 20 Mbit/s, 30 Mbit/s) = 20 Mbit/s
BDP = 100 ms - 20 Mbit/s = 2000 kbit

50 Mbit/s 20 Mbit/s 30 Mbit/s

20ms (& 50ms (S 30ms
= = = -

Transport Layer Protocols — TCP

Congestion Control
Operation Point

RTT

Delivery Rate

BDP

Amount Inflight

BDP + BtineckBufSize

Transport Layer Protocols — TCP

13

Congestion Control
Operation Point

RTT

Delivery Rate

Application Limited :

RTprop

BDP

Amount Inflight

BDP + BtineckBufSize

Transport Layer Protocols — TCP

13

Congestion Control
Operation Point

RTT

Delivery Rate

Application Limited

Bandwidth Limited

BtIBw

B

DP

Amount Inflight

BDP + BtineckBufSize

Transport Layer Protocols — TCP

13

Congestion Control
Operation Point

RTT

Delivery Rate

Application Limited

Bandwidth Limited

Buffer Limited

BtIBw

B

DP

Amount Inflight

BDP + BtineckBufSize

Transport Layer Protocols — TCP

13

Congestion Control
Operation Point — Summary

e Application Limited if Inflight < BDP
e link underutilization
® |ow latency
e Bandwidth Limited if BDP < Inflight < BDP + BtlneckBufSize
e full link utilization
e buffer starts filling
e Buffer Limited if BDP + BtlneckBufSize < Inflight
® packet loss leads to lower goodput (retransmission consume bandwidth)
e unpredictable latency due to retransmissions

Application Limited

Bandwidth Limited

RTT

Buffer Limited

BtlBw

Delivery Rate

Amount Inflight

BDP + BtlneckBufSize

Transport Layer Protocols — TCP

14

Congestion Control
Is TCP Fair?

Problem:

e Multiple TCP flows use the same path
e Do all of them get an equal share of the bandwidth?
* Multiple different congestion control algorithms may be used!

\
100
)
e
5
_g 50
c
@
Vegas
CUBIC
0 I \ \
0 10 20 30 40
Time [s]

Transport Layer Protocols — TCP 15

Congestion Control
Measuring Fairness
Metrics often used for assessing numerically the fairness between n flows with x; the bandwidth of flow i:

II*

i

e The product measure:

e Epsilon-fairness: A rate allocation is defined as epsilon-fair if
min; x;

>1—c¢
max; X;j
e Jain’s fairness index:
1 1
2
(%) [1] © 08 108
—_— c[-=,1 5]
2 ’ 8 I
n-> . x n o
2% P o6l 106 =
= (2]
kel —_
e Returns a value between 0 and 1 s 3
T 04 104 ¢
e Scale free &
® Arbitrary number of flows 0.2} 10.2
o s % if there are k flows are perfectly fair while the other n — k shares are 0

—— Flow 1 — Flow 2 — Jain’s Index

Transport Layer Protocols — TCP 16

Congestion Control Algorithms

How does TCP regulate the sending rate?

e Only have a well-defined number of bytes (/ segments) in the network, which have not yet been acknowledged
e This number of bytes is called the Congestion Window

How to process available information to modify the congestion window size?

e There are a lot of algorithms
e Different classes:

loss-based
delay-based
model-based
hybrid approach

e Most popular / interesting:

e TCP Tahoe (slow start, congestion avoidance)

e TCP Reno (fast retransmit, fast recovery, today: TCP New Reno)
e TCP Vegas

e TCP Cubic (current default in the Linux kernel)

e TCPBBR (new, proposed by Google)

Transport Layer Protocols — TCP

Loss-based Congestion Control
How do loss-based algorithms detect congestion?

Assumption: Packet loss only happens due to congestion

No packet loss — increase congestion window

Packet loss — decrease congestion window

Advantages: robust, reliable, efficient

Disadvantages: buffers are kept full — high latency, performance drop on lossy links
Examples: Reno, Bic, Cubic

I|: : ! I based
r : : 0SS-base!
| | operating
: ! point
| |
i} 1 Q ------------
T |
& ! BtiBw ‘
> | |
° i |
= ! |
2 | |
| |
| |
BDP BDP + BtineckBufSize

Amount Inflight

Transport Layer Protocols — TCP

18

TCP Reno
Basics of the Algorithm

Theory behind Reno:

e Every packet loss is induced by a network overload

® Therefore, TCP senders should reduce data rate

e However, think about lossy links!
e AIMD strategy: Additive Increase Multiplicative Decrease
e Two modes of operation:

e Slow Start: Exponential growth of congestion window
® Congestion Avoidance: Linear growth of congestion window

T T T T

%) o
@ 15| 3-dupl. ACKs CWND | |
=) --- ssthresh
= A -kl Timeout
B 10| |
;E: - - - - S
2 | BHEHHEEEHEHTEEE -PR-fak
= 5, -
a
z
S D D
5o =l = 0 L

0 2 4 6 8 12 14 18 20 22 24

Time

Transport Layer Protocols — TCP

TCP Reno
Algorithm
Variables:
e CWND: Congestion Window, limits the amount of inflight data
e ssthresh: Slow Start threshold
Slow Start:
e For every acknowledged MSS, increase CWND by 1 MSS
e Use this mode, if CWND < ssthresh
Congestion Avoidance:
e For every acknowledged MSS, increase CWND by 1/CWND

effectively increase CWND by 1 MSS each RTT — additive increase

e Use this mode, if CWND > ssthresh

m

Reception of 3 duplicated acknowledgments:
e Set ssthresh to CWND/2

e Set CWND to ssthresh (Fast Recovery) — multiplicative
decrease

Acknowledgement timeout:
e Set ssthresh to CWND/2
e Set CWND to 1 MSS
e Restart with Slow Start

3 —-- CWND

@ 15| y |
R 3-dupl. ACKs) --- ssthresh

= S A Timeout

g 1o i
£ - - S

= | BUHHHH T -

2 s) ,
: 1 1

O oL @ D =] D —

Transport Layer Protocols — TCP 20

TCP Reno
Problems of TCP Reno

e Low performance on lossy links

e Buffers are filled

® |Increase depends on the RTT — slow growth on long distance links

e Has problems fully utilizing large BDP links

CWND/ssthresh in MSS

15

10

~__CWND

- -- ssthresh

Timeout

Transport Layer Protocols — TCP

21

TCP Cubic TI.ITI

Basics of the Algorithm

Theory behind Cubic:

e Published in 2008 [2]

e RFC since February 2018 [3] (informational) and August 2023 [4] (standards track)
e Default congestion control algorithm in Linux since kernel 2.6.19 (Nov. 2006)

e Same as Reno: Packet losses are considered to indicate a network overload

e But: Scaling should be different

e Maximum usable bandwidth is estimated

e That bandwidth should be used, and if nothing is lost, higher bandwidth is explored

Transport Layer Protocols — TCP

22

TCP Cubic
Formulas

Weuvic: Congestion Window according to TCP Cubic

3
Winax: Window size at which last packet loss occurred Weusie(f) = C - (t — K)” + Wnax

t: time since the last packet loss K = 3/ Wnax - (1 — Boubic)/C
B: window decrease constant for multiplicative decrease of window C=04
C: Cubic parameter B=07

Things to note:

Congestion window is not halved for every packet loss (8 = 0.7)

Congestion window growth is modeled after a cubic function with plateau Weypic

Converges fast (concave growth) towards the bandwidth of the last packet loss Weupic (estimated network maximum)
If this is fine, higher bandwidth is explored (convex growth)

Transport Layer Protocols — TCP

E@ DB

23

TCP Cubic
Example

o o o o o o
S S S) S
S <} © < «

SSIN Ul NMO

Time

C and Beuic Were tweaked for demonstrative purposes.

24

Transport Layer Protocols — TCP

TCP Cubic
Result

Advantages

e CWND growth is independent of the RTT
e Scalable to high BDP networks
® More resilient against single stochastic packet loss than Reno

Disadvatages

e Buffers are filled faster (cubic growth function)
e Buffers are kept full (reduced only by 30 % after packet loss)

Transport Layer Protocols — TCP

25

Delay-based Congestion Control

Basics
e Use delay to detect congestion

e |Increase in RTT — a buffer is filling up some-
where

Advantages
® Less restrained by random packet loss
e Early congestion detection
e High throughput with low latency
Disadvantages
® One loss-based flow cancels all advantages
e Poor performance against loss-based flows

RTT

Delivery Rate

| delay-based
I operating

| point

I
| loss-based
| operating

I point

BtiBw

Amount Inflight

BDP + BtlneckBufSize

Transport Layer Protocols — TCP

26

TCP Vegas
Basics of the Algorithm

Theory behind Vegas:

Formula: Each RTT:
A < CWND - RTT — RTTmin e If A > j (Linux: 4): window size is decreased by 1 MSS
RTT o If A < « (Linux: 2): window size is increased by 1 MSS

Presented in 1994 [5]

Reno relies on losses to detect network congestion

At that point something already has gone wrong

Vegas tries to detect that congestion is about to happen, and then reduces data rate
RTTs are continuously measured

RTT increases due to queuing effects

If RTT increases, the network is considered to become more congested

If RTT decreases, not all available bandwidth may be used

AIAD strategy: Addititive Increase Addititive Decrease

e If o < A < 3: Steady state — no modifications

Transport Layer Protocols — TCP

27

TCP Vegas
Delay-based vs Loss-based

100
g
<
i<}
£ 50
C
a
Vegas
CuUBIC
0 T | |
0 10 20 30 40

Time [s]

e Why use delay-based algorithms at all?

e background applications like downloading updates

® e.g. LEDBAT (Low Extra Delay Background Transport) [6]
e Use hybrid approach for better performance when competing with loss-based algorithms
e For example TCP lllinois:

e Packet-loss prescribes if CWND is increased or decreased
e Delay determines the quantity of the change

e low delay: faster increase, slower decrease
e high delay: slower increase, larger decrease

Transport Layer Protocols — TCP

TCP BBR TI.ITI

Basics of the Algorithm

Theory behind BBR:

e Presented by Google in 2016 [7]

e BBR: Bottleneck Bandwidth and RTT

e Aims for the same operation point as delay-based algorithms
e Maximum bandwidth is determined by a single bottleneck

e RTT increases due to queuing

® Available in Linux since kernel v4.9

e Used on Google’s and YouTube’s servers

e Used in Google’s B4 backbone network

® "BBR'’s throughput is consistently 2 to 25 times greater than CUBIC’s" [7]

* "BBR yielded 4 percent higher network throughput [...] BBR also keeps network queues shorter, reducing round-trip time by 33
percent™

Tebl 2017/07/1¢ 8 to- GeP- your- Internet- just-got- faster htnl

Transport Layer Protocols — TCP 29

https://cloudplatform.googleblog.com/2017/07/TCP-BBR-congestion-control-comes-to-GCP-your-Internet-just-got-faster.html

TCP BBR
Theory: ACK-clocking and Pacing

ACK-clocking

e Used by Reno, Cubic, Vegas, ...

e CWND limits the inflight datd but sending rate is not limited

e Arrival rate of ACKs determines the sending rate

e Traffic bursts can create queues even if link is not utilized

e Slow Start, retransmissions, ACK compression can cause bursts

e Goal: evenly space the transmission the packets of a window across an entire RTT

e Linux Kernel < 4.13: requires FQ queuing discipline on outgoing interface
tc qdisc add dev eth@ root fq pacing

e Linux Kernel > 4.13: pacing implemented in the Kernel

Transport Layer Protocols — TCP

30

TCP BBR
In practice

Goals

e Keep 1 BDP of data inflight — full link utilization and no queuing delay
e Send with the bottleneck bandwidth — no queue can build up

Implementation

e Continuously monitors the network to find the minimal RTT and maximum bandwidth

® Problem: theses parameters cannot be measured at once

e RTprop can only be measured if the buffers are empty
e BtlBw can only be measured while the link is fully utilized and a queue starts growing
e Solution: alternating measurements

e Use filters to record those values against sliding windows
e Requires pacing to match sending rate to the bottleneck bandwidth
Internal BBR values:

L]

RTprop
BtIBw
PacingGain
WindowGain

Four phases:

Startup

Drain

Probe Bandwidth
Probe Round-Trip Time

Transport Layer Protocols — TCP 31

TCP BBR
Startup and Drain
Startup

Similar to Slow Start — double sending rate each RTT

Sending Rate = BtlBw - 2.8853 (% =~ 2.8853)

Stop after three consecutive RTTs with less than 25 % in delivery rate increase
Finds BtlBw in log,(BDP) RTTs

Can create queue up to 2 BDP

Sending Rate [Mbit/s]
>

0 I

|
16 18

I
0 2 4 6 8 10 12 14
Time [s]

20

22

24

26

28 30

Transport Layer Protocols — TCP

32

TCP BBR

Startup and Drain

Startup

Drain

Similar to Slow Start — double sending rate each RTT

Sending Rate = BtIBw - 2.8853
Stop after three consecutive RTTs with less than 25 % in delivery rate increase
Finds BtlBw in log,(BDP) RTTs
Can create queue up to 2 BDP

(25 ~ 2.8853)

Goal: Remove the queue created during Startup

Sending Rate = BtIBw - 0.3465

(122 ~ 0.3465)

Leave Drain when data in flight matches estimated BDP

Sending Rate [Mbit/s]

20

——Startup—=Drain

12

I I
14 16
Time [s]

18

20

22

24

26

28 30

Transport Layer Protocols — TCP

32

TCP BBR
Probe Bandwidth

e Periodically probe for more bandwidth

e BtlBw is estimated using a max filter of length about ten estimated RTTs

e Sending Rate = BtIBw - PacingGain, with PacingGainin [1.25, ©.75, 1, 1, 1, 1, 1, 1]
e Each step takes about one RTT

e |f no bandwidth is available: sending rate is reduced afterwards to remove queue

e |f bandwidth is available: BtlBw is updated and thus sending rate increases

20

—— Startup ==Drain
151 —1Probe BW |

Sending Rate [Mbit/s]
>

I I
00 2 4 6 8 10 12 14

I I
16 18 20 22 24 26 28 30
Time [s]

Transport Layer Protocols — TCP

33

TCP BBR

Probe RTT

RTprop is estimated using a min filter of length 10's

If no new RTprop value is measured during this interval BBR enters Probe RTT
—=2 10 s interval between two Probe RTT phases

To ensure that all queues are empty, BBR reduces inflight to 4 segments for 200 ms + RTT
Problem: low delivery rates during Probe RTT — performance drop
Multiple BBR flows have to synchronize their Probe RTT phases to reach fairness

20

1 Startup =3 Drain
150 ——Probe BW=—1Probe RTT

Sending Rate [Mbit/s]
=

Il Il
16 18 20 22 24 26 28 30
Time [s]

Il
0 2 4 6 8 10 12 14

Transport Layer Protocols — TCP 34

TCP BBR
BBR Single Flow

2 - BtiBw

2 - RTprop

1

Sending Rate = = = BtiBw } -

—
—

AN R

|
I
RTT = = = RTprop m
" Sehbd |, " L

—

AL it ot

I I Ly I I
Inflight = = = BDP
e
LI

j T

Estimated = = = BtlBw |

Estimated = = = RTprop ‘

65 70 75 80

Transport Layer Protocols — TCP

35

TCP BBR
Strengths of BBR

® Robustness against random packet loss

e Low delay

e High bandwidth usage

e Close to the optimal operation point

e Does not starve when competing with other algorithms

ol P
—+- cuBic
7
T 3 400
g &
E >
é 50 2
g
8 = 20
2
o o - - -
H 3 3 - © 2 2888 SR 28 B g g % I3
3 Buffer (KB)

Loss Rate (%) - Log Scale

Figure 1: Figures from [7].

Transport Layer Protocols — TCP

TCP BBR TI.ITI

Problems with BBR [8], [9]

e Numerous BBR flows fail to keep the buffer empty

— Buffer Backlog --- 1.5BDP ‘7

j=2)
e Flows probe alternating for more bandwidth __g g -
e Sum of the bandwidth estimations is larger than actual bandwidth ®=
® Flows create a persistent queue of size ~ 1.5 BDP

® High number of retransmissions in networks with shallow buffers
e [f the buffer is smaller than the persistent queue — packet loss
e BBR does not react to it
e With small (shallow) buffers BBR can generate 20 % retransmissions

Rate [log %]
>

e

e RTT unfairness

Retransmission

e BBR flows with larger RTT receive larger bandwidth shares than flows with lower RTT
e With Reno and Cubic flows with lower RTT are favored

But:
e First version already shows promising results

e Still under active development:
https://groups.google.com/d/forum/bbr-dev

Sending Rate
[Mbit/s]

e BBR v2 already announced Time [s]

Figure 2: Source [8]

Transport Layer Protocols — TCP 37

https://groups.google.com/d/forum/bbr-dev

TCP BBR
BBR v2

BBR developers regularly present updates on BBR v2 on IETF meetings

Features:

e During Probe RTT, reduce cwnd to 50 % instead of 4 packets
e Consider detected packet loss for the model

e Incoporate protocol features like ECN

e Handle problems with ACK-aggregation

e Better coexistence with Reno/CUBIC

® |eave space for new entering flows

Transport Layer Protocols — TCP

38

TCP BBR 11f“

BBR v2

B dctcp W bbr2.old WM bbr2_new B dctcp W bbr2.old [bbr2_new
40 1000
30 750
16%!
20 500
10 1.6% 250
e
0 0
80 160 320 640 1280 2560 5120 80 160 320 640 1280 2560 5120
flows flows
(a) Retransmission Rate (b) Average RTT
[dctcp [l bbr2_old [bbr2_new W dctcp [bbr2_old [l bbr2_new
50000 100
40000 75
30000
50
20000
10000 2
0 0
80 160 320 640 1280 2560 5120 80 160 320 640 1280 2560 5120
flows flows
(c) Throughput (d) Fairness (Jain’s Index)

Figure 3: Figures from [10]

Transport Layer Protocols — TCP 39

Summary Congestion Control

Single flow, 10 Mbit/s bandwidth, 50 ms RTT, 2 BDP buffer size, flows run for 40 s, x-axis is time in seconds

Cubic
Sending 5 B sl B
Rate [Mbit/s] ’>
0 | | | 0 | | |
0 10 20 30 40 0 10 20 30 40
T T T T T T
1of 10
Delivery s | s |
Rate [Mbit/s]
%
150 |1~
100‘45/
RTT [ms] 50‘L
0 | | |
0 10 20 30 40
T T
3l
Inflight 2|
[BDP] 1 -
0 | | | 0 | | |
0 10 20 30 40 0 10 20 30 40

Try it yourself: https://gitlab.1lrz.de/tcp-bbr/measurement-framework

150

100

50

N

Vegas BBR
T T T T
10 [
f 1 |
| | | 0 | | |
0 10 20 30 40 10 20 30 40
T T T T T T
: 10
\
[. 5| .
| | | 0 ! | |
0 10 20 30 40 10 20 30 40
— T [— 1501 T [—
‘L — 100 —
[= 50 -
| | | 0 | | |
0 10 20 30 40 10 20 30 40
T T T T T T
*‘ | ’ |
I - 2 -
E i
| | | 0 \V \‘ \V
0 10 20 30 40 10 20 30 40

Transport Layer Protocols — TCP

40

https://gitlab.lrz.de/tcp-bbr/measurement-framework

TCP Congestion Control and Linux
Loaded congestion control

® $ sysctl net.ipv4.tcp_congestion_control
net.ipv4.tcp_congestion_control = cubic
® cubic (since version 2.6.19 - Nov. 2006)

Available congestion control

® §$ sysctl net.ipv4.tcp_available_congestion_control
net.ipv4.tcp_available_congestion_control = cubic reno

Implemented congestion control
e $ 1s /lib/modules/‘uname -r‘/kernel/net/ipv4/ | grep tcp
Load BBR module

® modprobe tcp_bbr
® $ sysctl net.ipv4.tcp_available_congestion_control
net.ipv4.tcp_available_congestion_control = cubic reno bbr

Set algorithm

® $ sysctl -w net.ipv4.tcp_congestion_control=bbr

e For BBR: Don't forget to enable pacing for your interface if you have Kernel < 4.13
$ tc qdisc add dev eth@ root fq pacing

Transport Layer Protocols — TCP

41

UDP UM

User Datagram Protocol
What is UDP?

e Short for User Datagram Protocol

e Defined in RFC 768 [11] (only 3 pages long!)
® A connectionless transport protocol

e Bit error detection

* No flow or congestion control

* No reordering, loss detection or recovery

e Lightweight

e Easy to implement

When is it used?

e DNS queries

® \oice-over-IP (VoIP)

e Game server-client / client-client communication
e NTP (Network Time Protocol)

Transport Layer Protocols — UDP 42

UDP Tum

UDP Header

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0B Source Port Destination Port
4B Length Checksum
Data
NI Ve e N T e N e R N P P e S O

e Source Port: Which application of the sending host sent the datagram

e Destination Port: Which application of the receiving host should receive the datagram
e Length: Length of the datagram (L4-PDU)

e Checksum: Checksum over IP pseudo header, UDP header, data

Transport Layer Protocols — UDP 43

uDP

Idea behind UDP

What does it achieve?

e Multiplexing of multiple communication instances between two hosts

Not much else — that is the point

Why use UDRP, if it does not do much?

Thin layer above I1Pv4 / IPv6
Application retains a lot of control

Suitable for time sensitive applications
= no transport layer mechanims that may impair timing properties

Occasional loss of datagrams tolerated or done by application
Re-ordering of datagrams tolerated or done by application

Example: Real-time video conferencing

One frame is lost during transit: Nobody notices anyways
If strict ordering was applied, retransmission would be needed

e Delays the video for a whole RTT
e Noticeable stuttering of the video

Transport Layer Protocols — UDP

44

SCTP
Stream Control Transmission Protocol

Goals:

Sou

Proposed in RFC 2960 (October 2000)
Extended in RFC 4960 (September 2007)

"Reliable transport protocol operating on top of a con-
nectionless packet network such as IP"

Combines advantages of TCP and UDP
Multiple streams
Supports of multi-homing

nds good, so why don’t we use it everywhere?

How STRNDHR‘DS PROLIFERATE
CHARACTER ENCODNGS,

(B AC CHARGERS, WSTART MESSAGING, £
M?! RIDICULOUS!
WE NEED To DEVELOP
.| | ONE UNERSAL STANDARD .
SITUATON: || Tuar covere Evervones || STUATION:
THERE ARE USE. CASES. — THERE ARE
|4 COMPETING \) I5 COMPETING
STANDPRDS. O STANDPRDS.

e TCP was already established as the default transport layer protocol (network ossification)

e Poor support in operating systems and applications

e Many middleboxes (e.g. firewalls, NAT) do not work with SCTP — packets are discarded

Transport Layer Protocols — SCTP

45

QuUIC
Introduction
[] CHTTPBE)
HTTP/2
Application
QUIC
Transport TCP C_uop)
Network [IP]
Figure 4: QUIC protocol stack adapted from [12]
What is QUIC? Motivation and Goals
e Originally Quick UDP Internet Connections, but not an acronym e Decrease handshake delay
e Developed around 2012 by Google, deployed in Google e Getrid of head-of-line blocking
Chrome and Chromium [12], [13] e Faster development cycles
e A substitute for the TCP/TLS protocol stack, based on UDP e Middlebox resistance
e 2016 - 2021 standardization by the IETF o |P mobility

Transport Layer Protocols — QUIC

46

QUIC Features

Connection ID
e Used instead of the 5-tuple as identifier
e This allows to change IP and port
Stream Multiplexing
e Multiple streams within a connection
e Each stream provides a reliable bidirectional bytestream
e QUIC packet contains several frames

e QUIC packet can carry stream frames from multiple
streams

Different Frame Types

e Control frames

e Data and acknowledgement frames
Flow Control

e Stream flow control

e Connection flow control
Congestion Control

e Currently Cubic

e BBR implementation in progress

Different Packet Types

* \Version Negotiation Packet

e |nitial Packet

® Retry Packet

e Handshake Packet
Encryption and Authentication

e Packets are always protected using TLS 1.3
Loss Detection and Re-ordering

® Retransmissions have different packet numbers — use
Stream Offset for in order delivery

e More elaborated acknowledgement mechanism includ-
ing selective and negative ACKs (SACKs and NACKs)

Transport Layer Protocols — QUIC 47

QUIC Features
Decrease Handshake Delay

Problem:
e TCP does a 3-way handshake
e TLS does at least 3-way handshake (or more...)
e Results in a lot of RTTs before data transmission
e Canin part be decreased using TCP Fast Open (but not widely
deployed)
Solution:
e |Introduce a 0-RTT and a 1-RTT handshake
e Merge the TCP and TLS component into one protocol
® Reuse old connections
e Client saves information about the server

TCP Handshake

114 1

TLS Handshake

m

Client Server

114t

114

Transport Layer Protocols — QUIC

48

QUIC Features
Get Rid of Head-of-Line Blocking

Problem:

e |f one TCP segment is lost in transit, everything after that has to wait
for delivery until successful retransmission (in-order property)

e Frequent goal: multiplexing multiple data streams over one TCP con-
nection
e Example: Two videos get transmitted over one TCP connection
e Server sends videos interleaved
e One packet containing a part of video #1 gets lost
e Following parts of video #2 cannot be processed, although they may al-
ready be present
e Result: Video #2 has unnecessary quality impairments

TCP
HTTP/2

one TCP connection for all objects

TCP
HTTP/2

one TCP connection for all objects

TCP
HTTP/2

TCP
HTTP/2

Figure 5: Adopted from QUIC: Next generation multiplexed transport over UDP

Transport Layer Protocols — QUIC

49

https://docs.google.com/presentation/d/13LSNCCvBijabnn1S4-Bb6wRlm79gN6hnPFHByEXXptk/present?slide=id.g257e81dc3_0191

QUIC Features
Get Rid of Head-of-Line Blocking

Problem:
e |f one TCP segment is lost in transit, everything after that has to wait
for delivery until successful retransmission (in-order property)
e Frequent goal: multiplexing multiple data streams over one TCP con-
nection
e Example: Two videos get transmitted over one TCP connection
e Server sends videos interleaved
e One packet containing a part of video #1 gets lost
e Following parts of video #2 cannot be processed, although they may al-
ready be present
e Result: Video #2 has unnecessary quality impairments
Solution:
e Protocol is aware of multiple streams

e Retransmission is done at stream-level, not connection-level

TCP
HTTP/2

TCP

“ma| HTTP2

one TCP connection for all objects

B Mare blocked

TCP
HTTP/2

Quic
HTTP/3

only Mis blocked

TCP
HTTP/2

one TCP connection for all objects

' auic
HTTP/3

Quic
HTTP/3

Quic

“ma| HTTPB

one QUIC stream for each object

Figure 5: Adopted from QUIC: Next generation multiplexed transport over UDP

Transport Layer Protocols — QUIC

49

https://docs.google.com/presentation/d/13LSNCCvBijabnn1S4-Bb6wRlm79gN6hnPFHByEXXptk/present?slide=id.g257e81dc3_0191

QUIC Features
Faster Development Cycles

Problem:

e TCP is implemented in the kernel
® = slow deployment of new mechanisms

e Devices often don’t get updated to newer kernel
e Getting modifications of kernel protocol mechanisms is a slow process
e Involves a lot of testing with a lot of different applications
® Running big-scale experiments with TCP is very difficult
&
Solution: s
(=]
® QUIC is based on UDP, and implemented in user 5
space i
s

® The kernel is not involved in the protocol itself

e Experiments with new protocol mechanisms are
straightforward,
as long as user-space is controlled by the appli-
cation vendor

0.8

0.6

0.4

0.2
0 [- - [- -

885353338385 85583535883
2015 2016

QUIC 23 mmms QUIC 25 QUIC 32 QUIC 35w
QuUIC 24 QUIC 30 QUIC 34 wwm

Figure 6: (Source: [12])

Note: In Dec 2015 Google disabled QUIC due to a vulnerability in the client code

Transport Layer Protocols — QUIC

50

QUIC Features
Middlebox Resistance

Why use UDP? Why not implement a new layer 4 protocol?
Problem:

e Middleboxes such as firewalls, “optimizers”, etc. exist
® |n many cases, they make things worse
e May lead to obscure behaviour
e Get produced by a variety of different vendors/manufacturers
e Getting along with middleboxes is like herding cats
Solution by QUIC:
e Encrypt data stream transported by UDP
e = protocol headers above are not accessible to middleboxes
e TCP-like “optimizers” are not possible due to encryption

LOOKING FOR YOUR PACKET?

Transport Layer Protocols — QUIC

51

QUIC Features
IP Mobility

Problem:

e TCP connections are identified by the 5-tuple

e (Client IP address may change during the connection
e DSL connection gets re-established after 24h

e Mobile clients move from one network to another

e NAT entry might expire — port changes

Solution:

e Do not use the 5-tuple as connection identifier
e QUIC identifies connections by a Connection ID

e Last client IP address to send a valid packet for a given Connection ID is the current IP address of the client

Transport Layer Protocols — QUIC

52

In Practice

e Google Chrome: chrome://flags/ — Experimental QUIC protocol — enabled

e QUIC is deployed for example on google.com and youtube. com

e There exist multiple implementations in different programming languages

Name Language Version Link

aioquic Python vi https://github.com/aiortc/aioquic
Isquic C vil,v2 hitps:/github.com/litespeedtech/Isquic
quic-go Go vi,v2 https:/github.com/quic-go/quic-go
quiche Rust vi https://github.com/cloudflare/quiche

* Not all implementations are compatible to each other

Transport Layer Protocols — QUIC

Standardization

IETF

® QUIC standardization since July 2016 by the Internet Engineering Task Force (IETF)
e Standardization finished with the release of RFC 9000 in May 2021 (after 34 drafts)
® https://datatracker.ietf.org/wg/quic/documents/

e 5key goals:

Minimizing connection establishment and overall transport latency for applications, starting with HTTP/2
Providing multiplexing without head-of-line blocking

Requiring only changes to path endpoints to enable deployment

Enabling multipath and forward error correction extensions

Providing always-secure transport, using TLS 1.3 by default

T T
2001~ 2016.07-08 ‘
(%]
g | |
& I I
s | |
5 100|— ! 2021-05-271 |
o)
€ | |
=1 | |
z |
|
0 |
ooV ® o\ oo o2

Figure 7: Number of pages in the IETF QUIC draft/RFC.

Transport Layer Protocols — QUIC

54

https://datatracker.ietf.org/wg/quic/documents/

IETF QUIC
Packet Format

Long Header
e Only used for Initial, 0-RTT, Handshake, and Retry packets

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1| 1| Type | Type-Specific
Version
DCID Len Destination Connection ID (0..160 bit)
SCID Len Source Connection ID (0..160 bit)
Payload
L~ AN —]
Short Header

e Designed for minimal overhead

e Used after a connection is established

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1]S [Reserved| K P

Destination Connection ID (0..160 bit)
Packet Number (8/16/24/32 bit)

Protected Payload

e T~ N AT~ AT N —

Transport Layer Protocols — QUIC

55

IETF QUIC
Packet Format

[Checksum) UDP Datagram

Payload

QUIC packet:

e A complete processable unit of QUIC that can be encapsulated in a UDP datagram

Checksum | UDP Datagram

Connection ID QUIC Packet
Packet Number

Payload

e Multiple QUIC packets can be encapsulated in a single UDP datagram
e Connection ID used to get connection, packet number to decrypt payload

Packet number:

Integer in the range 0 to 252 — 1

Used in determining the cryptographic nonce for packet protection
Different packet number spaces for initial packets, handshake packets, and application packets
Start at packet number 0 and must be increased by at least 1 for subsequent packets

m

Checksum | UDP Datagram

Connection ID QUIC Packet
Packet Number
QUIC Frame || QUIC Frame
-Type -Type
.
Payload Payload

J

2

QUIC frame:

e Types: PADDING, PING, ACK, STREAM, ...

e Some frame types are only allowed in
certain packet types, e.g. at connection

start/end

Transport Layer Protocols — QUIC 56

IETF QUIC
Packet Format

Different QUIC packet types:

e Initial and Handshake: carries the first CRYPTO frames and ACKs sent by the client and server to perform key exchange

e 0-RTT: used to carry "early" data from the client to the server as part of the first flight, prior to handshake completion, e.g. HTTP request

e 1-RTT: used with the short header once 1-RTT keys are available

Different QUIC frame types:
PADDING, PING, ACK, STREAM, ...

Variable Length Integer Encoding:

e ensures that smaller integer values need fewer bytes to encode

e the two most significant bits of the first byte encode the log, of the integer encoding length in bytes

2bit Length Usable Bits Range

00 1 6 0-63

01 2 14 0-16383

10 4 30 0-1073741823

11 8 62 0-4611686018427387903

Transport Layer Protocols — QUIC

57

IETF QUIC
Security

Security Goals:

e Confidentiality (only encrypted data transfer)
e Authentication (server is authenticated, client optionally)
® Integrity (message authentication code)

Transport Layer Protocols — QUIC

58

IETF QUIC
Security

Security Goals:

e Confidentiality (only encrypted data transfer)
e Authentication (server is authenticated, client optionally)
® Integrity (message authentication code)

TLS 1.3

e TLS (Transport Layer Security) 1.3 specified in RFC 8446
e Faster handshakes than previous TLS versions, also 0-RTT
® Removes several outdated/insecure cipher suites

e Only supports AEAD algorithms

Transport Layer Protocols — QUIC

58

IETF QUIC
Security

Security Goals:

e Confidentiality (only encrypted data transfer)
e Authentication (server is authenticated, client optionally)
® Integrity (message authentication code)

TLS 1.3

e TLS (Transport Layer Security) 1.3 specified in RFC 8446
e Faster handshakes than previous TLS versions, also 0-RTT
® Removes several outdated/insecure cipher suites

e Only supports AEAD algorithms

AEAD

e Authenticated encryption with additional data

e Encrypt and compute message authentication code (MAC) simultaneously
e Plaintext P, ciphertext C, associated data A, nonce N, key k

e Encrypt: C = f(k, N, A, P)

e Decrypt: P = f(k, N, A, C), should return an error if integrity check fails

Transport Layer Protocols — QUIC

58

IETF QUIC
Packet Protection
Cryprography:
e Shared secret S, plaintext P, ciphertext C
e Derived keys from S using key derivation function:

® key
e jv (initialization vector)
e hp (header protection)

e Number used once (nonce) N to prevent replay attacks, derived from
the packet number

Transport Layer Protocols — QUIC

59

IETF QUIC

Packet Protection
Cryprography:
e Shared secret S, plaintext P, ciphertext C
e Derived keys from S using key derivation function:
® key
e v (initialization vector)

e hp (header protection)

e Number used once (nonce) N to prevent replay attacks, derived from
the packet number

Encrypt:

1. Compute packet nonce N

Header

Payload

Jequun jexord

Nonce

(VaLY]
2P

~

Transport Layer Protocols — QUIC

59

IETF QUIC

Packet Protection
Cryprography:
e Shared secret S, plaintext P, ciphertext C
e Derived keys from S using key derivation function:
® key
e v (initialization vector)
e hp (header protection)

e Number used once (nonce) N to prevent replay attacks, derived from
the packet number

Encrypt:
1. Compute packet nonce N
2. Compute C = AEAD(key, N, associated data, P)

Header

Payload

Jequun jexord

Associated Data

Nonce

oureld

(VaLY]
2P

~N

Ciphertext

Transport Layer Protocols — QUIC

3 AEAD k— key

59

IETF QUIC
Packet Protection
Cryprography:
e Shared secret S, plaintext P, ciphertext C
e Derived keys from S using key derivation function:
® key
e v (initialization vector)

e hp (header protection)

e Number used once (nonce) N to prevent replay attacks, derived from
the packet number

Encrypt:
1. Compute packet nonce N
2. Compute C = AEAD(key, N, associated data, P)
3. Add header protection

e Encrypt certain 128 bit of C with hp key

e Mask so that only some header fields are protected (e.g. packet number)
e XOR with original header

Header Payload

o

i:?— Associated Data g

:

g_ =

8 ~

P 4 Nonce

D AEAD k— key
hp

iv
l ' 4

53(Mask Enc [¢ 12801 Ciphertext
Protected Header Protected Payload

Transport Layer Protocols — QUIC 59

IETF QUIC
Packet Protection
Cryprography:
e Shared secret S, plaintext P, ciphertext C
e Derived keys from S using key derivation function:
® key
e v (initialization vector)

e hp (header protection)

e Number used once (nonce) N to prevent replay attacks, derived from
the packet number

Encrypt:
1. Compute packet nonce N
2. Compute C = AEAD(key, N, associated data, P)
3. Add header protection

e Encrypt certain 128 bit of C with hp key

e Mask so that only some header fields are protected (e.g. packet number)
e XOR with original header

Decrypt:

1. Remove header protection

Header Payload
E 0
% Associated Data B
:
g g
g
X Nonce
& s| AEAD [— key
hp
iv
()(Mask Enc [¢ 12801 Ciphertext
Protected Header Protected Payload

2. Compute packet nonce N
3. Compute P = AEAD(key, N, associated data, C)

Transport Layer Protocols — QUIC 59

IETF QUIC
Handshake

e Combined Transport and cryptographic handshake (current version uses TLS 1.3)
e Authenticated key exchange
e Server is always authenticated (e.g. certificate)
e Client is optionally authenticated
e Authenticated exchange of values for transport parameters
e E.g. max_idle_timeout, max_udp_payload_size, initial_max_data, ...
e Negotiating Connection IDs

Transport Layer Protocols — QUIC

60

IETF QUIC
Handshake Example

Packet Type and Packet Number
Initial[0]: CRYPTO[SH] ACK[0]

Frame Types and Content

Client Server

Initialfey. CRYPTO[CH]

1] ACK[0]
- 5a1[01: CRYPTOLS ..
mu‘:\laie][w CRYPTOLEE, CERT, €

nds! U)
\:a»RTT[Q]: STREAMLT, " - 1

Pinitial[lj: ACK[e0]

andshakerp7. Cl

a * CRYPTQ

1-RTT[0]: STREAM[@ gFINJY el

ACKT0] _.."1, AcKrel

ke[11: ,
Harr‘i?rﬂ?} HANDSHAKE _DONE » STREAML
1- :

FIN]

(a) 1-RTT Handshake

Transport Layer Protocols — QUIC

61

IETF QUIC
Handshake Example

Packet Type and Packet Number
Initial[0]: CRYPTOLSH] ACK[0]

Frame Types and Content

Client

Initialfey. CRYPTO[CH]

1] ACK[0]
<tial[0]: CRYPTOLS v
mu‘:\ie][@]‘ CRYPTOLEE, CERT, OV

andsl U)
\,:»RTT[Q]: STREAMLT, " -]

Piru'c:ial[lfl: ACK[e0]
lan
1,RT$hake[03: CRYPTO[FINJ
[o]: STREAML@, » 5 ke

ACK[0] _.."1, AcKrel

ke[11: 3, "
\:a_r;ﬂ?]: HADSHAKE _DONE, STREAME

FIN]

Server

(a) 1-RTT Handshake

m

Server

Client

Initialfey. CRYPTOLCH]

9-RTT[0]. STREAM[@, » "

1 CRYPTOLSH] ACKLO]

itiall0
i{:wdshake[@] CRVPTO[EE, va]NlAcKw]
1-RTTLO]: STREAMLCY, -+

Initial[yy.

© ACK[o]

H.

andshake[@]: CRVF’TO[FIN] ACK[0]

T-RTT[1]: STREAM[@, » "1 ACK[
F o]

ACKT@] .1, AT

kel11: Mes, "
‘:i:ﬁg]: HADSHAKE _DONE, STREAME

(b) 0-RTT Handshake

Transport Layer Protocols — QUIC

61

IETF QUIC
Version Negotiation

e QUIC versions are identified using a 32-bit unsigned number

e \ersion 0x0000 0000 is reserved to represent version negotiation

e The version of QUIC v1 is identified by the number 0x0000 0001

e Public known versions of different vendors:
https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

Procedure:

e Client sends used version in the long header

Version Owner

0x0000 0001 IETF (QUIC v1)
0x5130 xxxx Google
oxfaceb@ox Facebook
Oxabcd000x Microsoft
oxfofe fofx ETH Zlrich
oxf123 focx Mozilla

e If the version is not supported by the server it replies with a Version Negotiation packet listing all supported versions (its own version

field is set to 0x0000 0000)
e The client can pick a supported version

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 | 1 | Type | Type-Specific |
Version
DCID Len Destination Connection ID (0..160 bit)
SCID Len Source Connection ID (0..160 bit)
Payload

N e e W e N ol N e N

Transport Layer Protocols — QUIC 62

https://github.com/quicwg/base-drafts/wiki/QUIC-Versions

IETF QUIC TI.ITI

Streams and Acknowledgements

Streams:

e Lightweight, ordered byte-stream abstraction

e Bidirectional or unidirectional

e Stream frames can open, carry data for, or close a stream

e Unique stream ID (62-bit integer), two bits used to identify initiator and if bi- or unidirectional

* Multiple streams are sent interleaved, streams can be prioritized (avoidance of head-of-line blocking)

Acknowledgements:

e Packet numbers are acknowledged, after all frames have been processed

e Tries to send ACK frames as often as possible to improve loss and congestion response
e Trade-off between load generation and short response times

e ACK frame contains multiple ACK ranges

Transport Layer Protocols — QUIC

63

Analysis
Spin Bit

e Most of the QUIC PDU is encrypted, which makes passive monitoring impossible
e e.g. for TCP SEQ/ACK pairs and timestamp options are observable
e Spin bit introduces the possibility to passively measure the connection’s RTT

> X

(a) Client starts sending packets

= K KK
L]

XX X X

(c) Spin bit is flipped

P P> <

7oK X XK X

(e) Spin bit is flipped again

Spin bit

> X X X

. X X
(b) Server reflects the bit
- X XK X X
XX XX
(d) Server reflects the bit
RTT
et S
(R E———— A ————
Time

(f) Spin bit as seen by an observer
Transport Layer Protocols — QUIG

64

Analysis
glog and qvis [14]

e |ETF drafts gives guidelines for implementing the QUIC protocol
® Implementations widely differ due to different developers/ languages

e Packets on the wire are encrypted (requires session keys to analyze)
e Internal QUIC state/events cannot be analyzed only with packet traces

- Tool to analyze, compare and verify implementations is needed

glog

e Based on JSON
e (timestamp, event type, event specific data)

qvis

e Browser interface to visualize glog files
e Different diagram types: sequence diagram, congestion diagram, . ..

e sequence diagram

e congestion diagram

e multiplexing diagram
® packetization diagram

e Tryit: https://qvis.quictools.info

Transport Layer Protocols — QUIC

65

https://qvis.quictools.info

Applications

Unreliable Datagram Extension (RFC 9221)

e Encrypted and congestion controlled but not flow controlled and reliable (retransmitted)
e QUIC datagrams can share a connection with reliable QUIC streams
— Only one handshake, one congestion controller, one encryption context, . ..

MASQUE

e Multiplexed Application Substrate over QUIC Encryption
e Protocol group under standardization by the MASQUE working group
e Proxying of UDP- and IP-based traffic over HTTP

Transport Layer Protocols — QUIC

66

Applications

Multipath Extension for QUIC

e Simultaneous usage of multiple paths for a single connection
e Extension not yet standardized

HTTP/3 (RFC 9114)

e Next version of HTTP is standardized using QUIC as underlying protocol
e Distribute different transactions (request/response pairs) to individual streams
— Fixes HolL-blocking problem of HTTP/2

QUIC Version 2 (RFC 9369)

e Version field value: 0x6b3343cf (first four bytes of the sha256sum of "QUICv2 version number")

e Further prevent network ossification

Transport Layer Protocols — QUIC

67

QUIC - Conclusion

e Still relatively new protocol
e Higher CPU costs as TCP/TLS, but optimization is ongoing
e UDP interface is still far less optimized than TCP
e QUIC encrypts packets twice (header and payload), each packet has to be encrypted individually
e Deploying networking protocols in user space
e faster and easier development cycles
® bypass problems like head-of-line blocking
e "Layering enables modularity but often at the cost of performance” [12]
e Achieve lower latency with 0-RTT handshake
e HTTP/3 is standardized using QUIC instead of TCP

“In other words, QUIC is as simple as the modern in-

ternet demands, which is not very simple in absolute

terms.” 2

2
https: //w. Fastly. con/blog/maturing-of - quic

Transport Layer Protocols — QUIC

68

https://www.fastly.com/blog/maturing-of-quic

QuIC

)

(2]

131
[4]
151
(6]
[71
18]

[0l

Tim

DARPA, TRANSMISSION CONTROL PROTOCOL, https:/tools.ietf.org/html/rfc793, 1981.

S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM SIGOPS operating systems review, vol. 42,
no. 5, pp. 64-74, 2008.

L. Xu, A. Zimmermann, L. Eggert, I. Rhee, R. Scheffenegger, and S. Ha, “CUBIC for Fast Long-Distance Networks,”, 2018.
L. Xu, S. Ha, I. Rhee, V. Goel, and L. Eggert, “CUBIC for Fast and Long-Distance Networks,” RFC Editor, RFC 9438, 2023.

L. S. Brakmo, S. W. O’'Malley, and L. L. Peterson, “TCP Vegas: New Techniques for Congestion Detection and Avoidance,” in
Proceedings of the Conference on Communications Architectures, Protocols and Applications, 1994. [Online]. Available:
http://doi.acm.org/10.1145/190314.190317.

S. Shalunov, G. Hazel, J. lyengar, and M. Kuehlewind, “Low extra delay background transport (ledbat),” RFC 6817, 2012. [Online].
Available: http://www.rfc-editor.org/rfc/rfc6817.txt.

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR: Congestion-Based Congestion Control,” ACM Queue,
2016. [Online]. Available: http://queue.acm.org/detail.cfm?id=3022184.

D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and G. Carle, “Towards a Deeper Understanding of TCP BBR
Congestion Control,” in IFIP Networking 2018, Zurich, Switzerland, May 2018.

M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR congestion control,” in 2017 IEEE 25th International
Conference on Network Protocols (ICNP), IEEE, 2017, pp. 1-10.

Transport Layer Protocols — QUIC 69

http://doi.acm.org/10.1145/190314.190317
http://www.rfc-editor.org/rfc/rfc6817.txt
http://queue.acm.org/detail.cfm?id=3022184

Quic UM

[10] N. Cardwell, Y. Cheng, et al., “BBR v2: A Model-based Congestion Control Performance Optimizations,” IETF 106, 2019,
Presentation Slides. [Online]. Available:
https://datatracker.ietf.org/meeting/106/materials/slides-106-iccrg-update-on-bbrv2.

[11] J. Postel, User Datagram Protocol, https://tools.ietf.org/html/rfc768, 1990.

[12] A.Langley et al., “The QUIC Transport Protocol: Design and Internet-Scale Deployment,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017. [Online]. Available: http://doi.acm.org/10.1145/3098822.3098842.

[13] E.J.lyengar and E. M. Thomson, QUIC: A UDP-Based Multiplexed and Secure Transport,
https://tools.ietf.org/html/draft-ietf-quic-transport-05, 2017.

[14] R. Marx, M. Piraux, P. Quax, and W. Lamotte, “Debugging QUIC and HTTP/3 with Qlog and Quvis,” in Proceedings of the Applied
Networking Research Workshop, ser. ANRW "20, Virtual Event, Spain: Association for Computing Machinery, 2020, 58-66, ISBN:
9781450380393. DOI: 10.1145/3404868.3406663. [Online]. Available: https://doi.org/10.1145/3404868.3406663.

Transport Layer Protocols — QUIC 70

https://datatracker.ietf.org/meeting/106/materials/slides-106-iccrg-update-on-bbrv2
http://doi.acm.org/10.1145/3098822.3098842
https://doi.org/10.1145/3404868.3406663
https://doi.org/10.1145/3404868.3406663

	Transport Layer Protocols
	TCP
	Basics
	Flow Control
	Congestion Control
	Congestion Control Algorithms
	Loss-based Congestion Control
	TCP Reno
	TCP Cubic
	Delay-based Congestion Control
	TCP Vegas
	TCP BBR
	Summary Congestion Control
	TCP Congestion Control and Linux

	UDP
	SCTP
	QUIC
	QUIC Features
	In Practice
	Standardization
	IETF QUIC
	Analysis
	Applications
	QUIC – Conclusion

	Bibliography

