
Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Advanced Computer Networking (ACN)

IN2097 – WiSe 2025–2026

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller

Christian Dietze, Marcel Kempf, Lorenz Lehle

Chair of Network Architectures and Services
School of Computation, Information and Technology

Technical University of Munich



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 1



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 2



Performance metrics

Performance metrics for network devices

Metrics (taken from RFC 2544):

• Throughput: bandwidth and packet rate

• Latency: average, standard deviation, median, jitter, percentiles

• Other metrics:
• Frame loss rate
• Maximum burst length
• Recovery after overload
• Recovery after system reset

These metrics can be measured under varying circumstances: type of traffic, applied load, device settings, . . .

Performance Measurements — Performance metrics 3



Performance metrics

Common standards for performance evaluations

RFC 2544 - Benchmarking Methodology for Network Interconnect Devices
Used by almost all vendors of network devices. Published in 1999, does not take effects of modern software-based
systems into account.

RFC 1242 - Benchmarking Terminology for Network Interconnection Devices
Defines basic terminology for benchmarks, e.g., constant load is defined as packets sent in a fixed interval.

RFC 8204 - Benchmarking Virtual Switches in OPNFV
Describes a modern framework to measure virtualized network devices.

IMIX - Internet MIX
Distribution of packet sizes found on the Internet. Often used by firewall vendors to quantify throughput. Not an official
standard, published by Agilent.

Performance Measurements — Performance metrics 4



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 5



Throughput

P0
P1

P2

A

B

Lookup Table

A

B

P1

P2

to A

Network devices performing only basic functions like switching and routing are usually only limited by:
• Line rate

• Size/speed of the lookup-tables:
• Lookup in hardware: content-addressable memory (CAM)

→ small, fast, and expensive
• Lookup in software: RAM, CPU cache

→ big, cheap, and slow

Interesting scenarios:
• Complex processing, e.g., in firewalls or SDN switches

• Software routers

• Virtual switches to connect virtual machines (VMs) to physical devices

Performance Measurements — Throughput 6



Throughput

Bandwidth vs. packet rate

Simply measuring the throughput in Gbit/s is not sufficient:

• Simple packet processing tasks (switching, routing) only process packet headers

• Actual size of the packet only plays a minor role

• Exception: Applications processing payload of packets (e.g., payload encryption), there the size of the packets matters

Packet processing costs:
Processing a packet has an inherent cost independent of its size

Worst-case scenario for network devices:

• Network traffic at line rate

• Minimum-sized packets

Hardware vendors often claim to reach line rate without mentioning the used packet size.

Performance Measurements — Throughput 7



Throughput

What’s the maximum packet rate of my network?

How many packets per second can you send over a 10 Gbit/s Ethernet connection?

• Common misconception: minimum size of an Ethernet frame is 64 bytes, so about 20 Mpps

• That does not take the physical layer into account

• Ethernet frames (Layer II) are encapsulated in Ethernet packets (Layer I)

• Ethernet packets start with a 7 byte preamble and 1 byte start-of-frame delimiter

• Minimum interpacket gap (IPG, also incorrectly referred to as interframe gap) of 12 bytes

• Minimum packet size: 84 bytes

• Maximum packet rate: 14.88 Mpps

IPG Preamble SFD Dst MAC Src MAC Type Data (L3-PDU) FCS (CRC32)

12 B 7 B 1 B 6 B 6 B 2 B 46 − 1500 B 4 B

Ethernet Frame 64 − 1518 B

Performance Measurements — Throughput 8



Throughput

What’s the maximum packet rate of my network?

How many packets per second can you send over a 10 Gbit/s Ethernet connection?

• Common misconception: minimum size of an Ethernet frame is 64 bytes, so about 20 Mpps

• That does not take the physical layer into account

• Ethernet frames (Layer II) are encapsulated in Ethernet packets (Layer I)

• Ethernet packets start with a 7 byte preamble and 1 byte start-of-frame delimiter

• Minimum interpacket gap (IPG, also incorrectly referred to as interframe gap) of 12 bytes

• Minimum packet size: 84 bytes

• Maximum packet rate: 14.88 Mpps

IPG Preamble SFD Dst MAC Src MAC Type Data (L3-PDU) FCS (CRC32)

12 B 7 B 1 B 6 B 6 B 2 B 46 − 1500 B 4 B

Ethernet Frame 64 − 1518 B

Performance Measurements — Throughput 8



Throughput
Measuring Throughput

Simplest methodology

• Configure device under test (DuT) to forward packets from ports A to ports B

• Apply the highest possible packet rate on ports A of DuT

• Measure the packet rate on ports B of DuT

Problems

• Potentially overloads the DuT, leading to different behavior

• The achieved throughput is not necessarily the highest possible throughput

• When also measuring latency: full buffers lead to worst-case latency

LoadGen DuT
▶
◀

▶
◀

Typical two-node measurement setup

Performance Measurements — Throughput 9



Throughput
Methodology from RFC 2544

• Configure DuT to forward packets from ports A to ports B

• Apply varying rates on ports A

• Find the highest rate at which no packet loss occurs, e.g., by doing a binary
search

Problems

• RFC 2544 calls for a completely loss-free test run

• Some devices lose packets when suddenly faced with a high packet rate due
to power-saving features

• Benchmarks take a long time, especially when testing a lot of configurations
or traffic types

LoadGen DuT
▶
◀

▶
◀

Typical two-node measurement setup

The best methodology depends on the DuT

• Test the behavior of the DuT and adapt the methodology: applying the maximum rate to measure the throughput is often sufficient

• Allow a small packet loss at the beginning or slowly ramp up the rate

• Reduce test time (RFC 2544 recommends at least 60 seconds)

Performance Measurements — Throughput 10



Throughput
Example: Linux Router, Bandwidth

• Maximum throughput determined by an RFC 2544 test
• Linear increase with packet size, i.e., the size does not matter

64 256 512 1,024 1,280 1,518
0

5

10

Packet size [byte]

R
at

e
[G

bi
t/s

]

Bandwidth
Link rate

Performance Measurements — Throughput 11



Throughput
Example: Linux Router, Packet Rate

• Performance leaves room for improvement with small packets

64 256 512 1,024 1,280 1,518
0

5

10

15

Packet size [byte]

R
at

e
[M

pp
s]

Throughput
Link rate

Performance Measurements — Throughput 12



Throughput

Example: Comparison

Forwarder Throughput [Mpps]

Line rate at 10 Gbit/s 14.88
Open vSwitch (Linux) 1.88
Linux routing 1.58
FreeBSD routing 1.30
Linux bridging 1.11

• This and the previous tests were using only a single 3.3 GHz CPU core

• Forwarding is a parallelizable problem

• No dependencies between packets of different flows

• How to parallelize?

Performance Measurements — Throughput 13



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 14



Parallel Packet Processing

Architecture of Network Cards

NIC
Core 0

Core 1

The Network Interface Card (NIC) offers:

• Interface for incoming transfer (RX queue)

• Interface for outgoing transfer (TX queue)

Problems:

• Only one core can access NIC simultaneously

• Scalability of multithreaded network applications very poor

• Single core performance limits throughput of whole system

Performance Measurements — Parallel Packet Processing 15



Parallel Packet Processing

Architecture of Modern Network Cards

NIC
Core 0

Core 1

Modern NICs have multiqueue support:

• High number of queues (e.g., 2048 queue pairs on Intel E810 25/100 GbE NICs)

• Can be used completely independent from each other

• A queue is typically used by a CPU core exclusively to improve cache locality

• Allows for perfect linear multi-core scaling

Performance Measurements — Parallel Packet Processing 16



Parallel Packet Processing

Parallel Packet Processing

Incoming traffic is distributed

• On a per-packet basis

• Every packet may be processed by a different core

- Slow if protocol state synchronization necessary between cores

- May cause packet reordering

• On a per-flow basis via hashing over protocol, addresses and ports

• One flow is only processed by a specific core

+ Fast if protocol state resides in the cache of the according core

+ Prevents packet reordering within a flow

• Explicitly configured filters

• Flows can be mapped to cores explicitly

- Hashing leads to better balancing

+ Useful to forward traffic to virtual machines

Performance Measurements — Parallel Packet Processing 17



Parallel Packet Processing

Multiqueue support influences application design:

• All threads should be pinned

• Threads only handle specific flows

• This concept does not map the POSIX socket API (1983)

Userspace vs kernelspace
Packet forwarding is typically done in the kernel to improve performance.

Packet processing in the kernel

• Low-level driver interface in Linux: NAPI (2001)

• NIC uses different interrupts (IRQs) for different queues

• IRQs can be pinned to CPU cores, thus achieving multi-core scaling

• All previous examples were kernel-based forwarders

• In-kernel forwarding is one order of magnitude faster than the socket API

• We do not discuss socket-based performance here

Performance Measurements — Parallel Packet Processing 18



Parallel Packet Processing
Example: Multi-core Scaling via Hashing

• Example: forward UDP packets with Open vSwitch
• Generate different flows by using multiple UDP source ports
• Linear scaling up to the number of (physical) CPU cores

1 2 3 4
0
1
2
3
4
5
6
7
8

Flows

P
ac

ke
tr

at
e

[M
pp

s]

Performance Measurements — Parallel Packet Processing 19



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 20



Improving Throughput

Bottlenecks

CPU processing power
Yes: bottleneck in the previous tests

NIC processing power
Sometimes:

• Cheap consumer NICs can often manage less than 500 kpps1

• Intel XL710 (2x 40 Gbit/s) achieves only 42 Mpps (28 Gbit/s at 64 byte frames)
• Intel E810 (2x 100 Gbit/s) achieves only approx. 100 Mpps (67 Gbit/s at 64 byte frames)

Bus (PCIe) bandwidth
PCIe 3.0 is 8 Gbit/s per lane. E.g., the Intel XL710 dual port 40 Gbit/s NIC only has 8 lanes.

Memory bandwidth
No: modern PCIe devices can access the CPU’s cache directly

CPU caches
Sometimes: depends on the forwarding software and use case (cf. lecture on routing table data structures)

1
cf. https://github.com/luigirizzo/netmap/blob/b249e9cd5ae12c7d57f3d4b5dc4aa8edded924ad/LINUX/README

Performance Measurements — Improving Throughput 21

https://github.com/luigirizzo/netmap/blob/b249e9cd5ae12c7d57f3d4b5dc4aa8edded924ad/LINUX/README


Improving Throughput

Profiling

• Fastest in-kernel forwarder: 1.88 Mpps at 3.3 GHz (single core)

3.3 GHz

1.88 Mpps
= 1755

Cycles

Pkt

• What is taking 1755 cycles to process a packet?

• Using profiling (perf on Linux) to find out

• perf allows us to see CPU cycles spent in each function

• Thousands of functions involved, so categorize them

Performance Measurements — Improving Throughput 22



Improving Throughput

Profiling

• Fastest in-kernel forwarder: 1.88 Mpps at 3.3 GHz (single core)

3.3 GHz

1.88 Mpps
= 1755

Cycles

Pkt

• What is taking 1755 cycles to process a packet?

• Using profiling (perf on Linux) to find out

• perf allows us to see CPU cycles spent in each function

• Thousands of functions involved, so categorize them

Performance Measurements — Improving Throughput 22



Improving Throughput

Receive
Receiving packets from the NIC, including interrupt overhead

Transmit
Sending packets to the NIC

skbuff
skbuffs are kernel data structures containing packet data and metadata, handling them comes with overhead

Memory
Memory management overhead

Processing
Reaching a forwarding decision

Performance Measurements — Improving Throughput 23



Improving Throughput

Profiling results

Linux
bridging

Linux
routing

Open
vSwitch

0

1,000

2,000

3,000

C
yc

le
s

pe
rp

ac
ke

t

Processing skbuff
Memory TX
RX

• About 1000 cycles just to receive and send a packet

• 400 cycles to manage memory and skbuff overhead

Performance Measurements — Improving Throughput 24



Improving Throughput

Can we do better?

Shift packet processing entirely into the user space:

• Map DMA buffers into a user space application

• Bypass the entire network stack of the OS

+ Fewer expensive system calls

+ Simplified memory management and data structures

+ Faster than the kernel by an order of magnitude

+ Batch processing throughout the whole application

- Handles only raw packets, protocols need to be implemented in the application

- NIC used exclusively by a single application

- Not API-compatible with traditional user space applications

• Examples:
• DPDK
• netmap
• Snabb

Performance Measurements — Improving Throughput 25



Improving Throughput

DPDK vs. the Linux kernel

Linux
bridging

Linux
routing

Open
vSwitch

DPDK
vSwitch

DPDK
L2FWD

0

1,000

2,000

3,000

C
yc

le
s

pe
rp

ac
ke

t

processing
skbuff
memory
TX
RX

• Open vSwitch can use DPDK for packet IO instead of running in the kernel
• 291 cycles per packet

• DPDK L2FWD forwards packets without consulting a lookup table
• 117 cycles per packet

Performance Measurements — Improving Throughput 26



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 27



Latency

Sources of Latency

Source of delay

Serialization (10 Gbit/s) 10 bit / ns
Propagation (≈ 2

3 c) 0.2 m / ns
Calculation (3 GHz CPU) 3 cycles / ns

• Serialization is given by the Ethernet standard

• Propagation is determined by the length of cable

• Reasonable calculations with around 3000 cycles only takes 1µs

• Time spent for buffering can be in the range of several µs

Buffers matter, processing time often does not.

Performance Measurements — Latency 28



Latency

Techniques for packet reception

• Classic system one interrupt per packet

+ low latency
- low throughput (interrupts are expensive)

• More modern systems process several packets per interrupt

+ high throughput (lower costs per packet)
- high latency

• No interrupts at all

+ low latency depending on polling frequency
+ high throughput
- inefficient at low packet rates (busy waiting for packets)

Performance Measurements — Latency 29



Latency

Latency with Batching

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

• Open vSwitch on Linux

• Batch processing

• Roughly a uniform distribution

Performance Measurements — Latency 30



Latency

Latency with Polling/Busy Wait

9 9.5 10 10.5 11 11.5
0

1

2

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

• DPDK on Linux

• Very small batches

• Roughly a normal distribution

Performance Measurements — Latency 31



Latency

Latency through a VM

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

• Forwarding through a VM

• Several buffers

• A long tail distribution, i.e., some packets are significantly slower than the average

Performance Measurements — Latency 32



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 33



Packet Generators

Source: www.spirent.com Performance Measurements — Packet Generators 34

www.spirent.com


Packet Generators

Properties of packet generators

• Hardware packet generators are
• Precise
• Accurate
• Fast

• Software packet generators
• Run on cheap commodity hardware
• Flexible

• Key challenges for software packet generators
• Rate control
• Timestamping

Performance Measurements — Packet Generators 35



Packet Generators

Properties of packet generators

• Hardware packet generators are
• Precise
• Accurate
• Fast

• Software packet generators
• Run on cheap commodity hardware
• Flexible

• Key challenges for software packet generators
• Rate control
• Timestamping

Performance Measurements — Packet Generators 35



Packet Generators

Properties of packet generators

• Hardware packet generators are
• Precise
• Accurate
• Fast

• Software packet generators
• Run on cheap commodity hardware
• Flexible

• Key challenges for software packet generators
• Rate control
• Timestamping

Performance Measurements — Packet Generators 35



Packet Generators

MoonGen

• MoonGen is a software packet generator developed here

• Available as open source software at https://github.com/tumi8/moongen

Performance Measurements — Packet Generators 36

https://github.com/tumi8/moongen


Packet Generators
MoonGen

Design goal of MoonGen
Combine the advantages of hardware and software packet generators while avoiding their disadvantages.

• Fast: DPDK for packet I/O, explicit multi-core support

• Flexible: Craft all packets in user-controlled Lua scripts

• Timestamping: Utilize hardware features found on modern commodity NICs

• Rate control: Hardware features and a novel software approach

Performance Measurements — Packet Generators 37



Packet Generators
MoonGen

Design goal of MoonGen
Combine the advantages of hardware and software packet generators while avoiding their disadvantages.

• Fast: DPDK for packet I/O, explicit multi-core support

• Flexible: Craft all packets in user-controlled Lua scripts

• Timestamping: Utilize hardware features found on modern commodity NICs

• Rate control: Hardware features and a novel software approach

Performance Measurements — Packet Generators 37



Packet Generators
MoonGen
Architecture

MoonGen Core

DPDK

U
se

rs
cr

ip
t

M
oo

nG
en

H
W NIC NIC

Port

Q0 ... Qn

Port

Userscript

Lua VM

Userscript
spawn

Userscript
worker

Lua VM

Userscript
main

Lua VM

config API data API

config API data API

Performance Measurements — Packet Generators 38



Packet Generators
Timestamping

Hardware timestamping

• NICs support Precision Time Protocol (PTP) for precise clock synchronization

• PTP support requires hardware timestamping capabilities

• These can be (mis-)used for delay measurements

• Typical precision
• ±1.0 ns (Intel 100 GbE chips)
• ±6.4 ns (Intel 10 GbE chips)
• ±32 ns (Intel GbE chips)

• Some restrictions
• Packets must be UDP or PTP L2 protocol
• Minimum UDP packet size is 84 bytes

• Some NICs support timestamping arbitrary packets (e.g., Intel Xeon D embedded X552, or Intel E810-based NICs)

Performance Measurements — Packet Generators 39



Packet Generators
Rate control
Software rate control in existing packet generators

Loadgen

NIC

DuT

NIC
p5

p5 p4 p3 p2 p1 p0

Qmemory QNIC Wire

• Software tries to push single packets to the NIC
• Queues cannot be used, no batch processing
• NICs work with an asynchronous push-pull model
• This can lead to micro-bursts
: Unreliable, imprecise, and bad performance

Performance Measurements — Packet Generators 40



Packet Generators
Rate control
Hardware rate control

Loadgen DuT

NICNIC
p9

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

HW rate control
enabled

Qmemory QNIC Wire

• Modern NICs support rate control in hardware
• Limited to constant bit rate and bursty traffic
• Precision controlled by the hardware

: High performance as queues can be used, but inflexible

Performance Measurements — Packet Generators 41



Packet Generators
Rate control
Software rate control based on invalid packets

Loadgen DuT

NICNIC
p6

p6 pi
3p5pi

4 pi
0p2pi

1p3pi
2p4 p1 p0

HW rate control
disabled

p5

Qmemory QNIC Wire

• Fill gaps with invalid packets p i (e.g. bad CRC)
• NIC in the DuT drops invalid packets without side-effects
• Combines advantages of both approaches
• Precision limited by byte rate (0.8 ns per byte) and minimum packet size (33 byte)
: High performance & high precision

Performance Measurements — Packet Generators 42



Packet Generators
Precision of software rate control
4 Mpps with constant bit rate

0
10
20
30

MSE = 37682
PF_RING ZC zsend

0
2
4 MSE = 59838
R

el
at

iv
e

pr
ob

ab
ili

ty
[%

]
Pktgen-DPDK

0
2
4 MSE = 20599 MoonGen (SW)

125 250 375 500 625
0

25

50
MSE = 1225

Inter-arrival time [ns]

MoonGen (CRC)

• Histogram of packet inter-arrival times, orange line marks target (200 ns) for CBR traffic

• Bursts with an inter-arrival time of 115 ns (128 Byte packets at 10 Gbit/s) are particularly bad

Performance Measurements — Packet Generators 43



Packet Generators
Precision of software rate control
3 Mpps, Poisson process

• Poisson process: exponential distribution of inter-arrival times (PDF: f (x) = λe−λx )
• Poisson is easier to generate and scale: Poisson processes can be merged (multi-threading)
• Histogram of a poisson process on a logarithmic plot should be a straight line

0 500 1,000 1,500 2,000 2,500 3,000
10−4

10−3

10−2

10−1

100

101

Inter-arrival time [ns]

R
el
at
iv
e
pr
ob

ab
ili
ty

[%
] MoonGen CRC

MoonGen SW
PFQ

Performance Measurements — Packet Generators 44



Packet Generators
Precision of software rate control
Does it matter?

• Device under test: Open vSwitch on Linux, measuring latency

• Compare CBR with Poisson traffic, change only the traffic pattern between tests

• Different response from the device under test when measuring latency

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

Offered load [Mpps]

La
te

nc
y

[µ
s]

CBR MoonGen (Median)
CBR MoonGen (25/75th perc.)
Poisson MoonGen (Median)
Poisson MoonGen (25/75th perc.)

Performance Measurements — Packet Generators 45



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 46



Benchmarking and Testing at I8

Further reading

What this lecture did not cover:

• Virtual machines

• Effects of CPU caches, hyper-threading, energy saving, clock frequency, . . .

• Other operating systems (FreeBSD, Windows, . . . )

• Traditional socket API

• Hardware latency measurements

• Lots of details (NAPI, interrupts, . . . )

Performance Measurements — Benchmarking and Testing at I8 47



Performance Measurements

Performance metrics

Throughput

Parallel Packet Processing

Improving Throughput

Latency

Packet Generators

Benchmarking and Testing at I8

Bibliography

Performance Measurements 48



Performance Measurements

We recommend the following publications if you are interested

[1] P. Emmerich, “Demystifying Network Cards,” in 34th Chaos Communication Congress
https://media.ccc.de/v/34c3-9159-demystifying_network_cards, Dec. 2017.

[2] P. Emmerich, S. Ellmann, and S. Voit, “Safe and Secure Drivers in High-Level Languages,” in 35th Chaos Communication Congress
https://media.ccc.de/v/35c3-9670-safe_and_secure_drivers_in_high-level_languages, Dec. 2018.

[3] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, “MoonGen: A Scriptable High-Speed Packet Generator,” in
Internet Measurement Conference (IMC) 2015, IRTF Applied Networking Research Prize 2017, Tokyo, Japan, Oct. 2015.

[4] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in USENIX Annual Technical Conference (ATC), 2012.

[5] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “Comparison of Frameworks for High-Performance Packet IO,” in
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS 2015), 2015.

[6] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle, “Throughput and Latency of Virtual Switching with Open vSwitch:
A Quantitative Analysis,” in Journal of Network and Systems Management, Jul. 2017. DOI: 10.1007/s10922-017-9417-0.

[7] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Assessing Soft- and Hardware Bottlenecks in PC-based Packet Forwarding
Systems,” in Fourteenth International Conference on Networks (ICN 2015), 2015.

Performance Measurements 49

https://media.ccc.de/v/34c3-9159-demystifying_network_cards
https://media.ccc.de/v/35c3-9670-safe_and_secure_drivers_in_high-level_languages
https://doi.org/10.1007/s10922-017-9417-0

	Performance Measurements
	Performance metrics
	Throughput
	Parallel Packet Processing
	Improving Throughput
	Latency
	Packet Generators
	Benchmarking and Testing at I8
	Bibliography


