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Performance metrics

Performance metrics for network devices
Metrics (taken from RFC 2544):

e Throughput: bandwidth and packet rate
e Latency: average, standard deviation, median, jitter, percentiles
e Other metrics:

Frame loss rate

Maximum burst length
Recovery after overload
Recovery after system reset

These metrics can be measured under varying circumstances: type of traffic, applied load, device settings, . ..

— metrics
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Common standards for performance evaluations

RFC 2544 - Benchmarking Methodology for Network Interconnect Devices
Used by almost all vendors of network devices. Published in 1999, does not take effects of modern software-based
systems into account.

RFC 1242 - Benchmarking Terminology for Network Interconnection Devices
Defines basic terminology for benchmarks, e.g., constant load is defined as packets sent in a fixed interval.

RFC 8204 - Benchmarking Virtual Switches in OPNFV
Describes a modern framework to measure virtualized network devices.

IMIX - Internet MIX
Distribution of packet sizes found on the Internet. Often used by firewall vendors to quantify throughput. Not an official
standard, published by Agilent.
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Network devices performing only basic functions like switching and routing are usually only limited by:
e Linerate
e Size/speed of the lookup-tables:

e | ookup in hardware: content-addressable memory (CAM)
— small, fast, and expensive

e Lookup in software: RAM, CPU cache
— big, cheap, and slow

Interesting scenarios:
e Complex processing, e.g., in firewalls or SDN switches
e Software routers
e Virtual switches to connect virtual machines (VMs) to physical devices
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Bandwidth vs. packet rate
Simply measuring the throughput in Gbit/s is not sufficient:

e Simple packet processing tasks (switching, routing) only process packet headers
e Actual size of the packet only plays a minor role

e Exception: Applications processing payload of packets (e.g., payload encryption), there the size of the packets matters

Packet processing costs:
Processing a packet has an inherent cost independent of its size

Worst-case scenario for network devices:

® Network traffic at line rate
e Minimum-sized packets

Hardware vendors often claim to reach line rate without mentioning the used packet size.

Performance Measurements — Throughput
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What’s the maximum packet rate of my network?
How many packets per second can you send over a 10 Gbit/s Ethernet connection?

e Common misconception: minimum size of an Ethernet frame is 64 bytes, so about 20 Mpps

Performance Measurements — Throughput
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What’s the maximum packet rate of my network?

How many packets per second can you send over a 10 Gbit/s Ethernet connection?

Common misconception: minimum size of an Ethernet frame is 64 bytes, so about 20 Mpps

That does not take the physical layer into account

Ethernet frames (Layer Il) are encapsulated in Ethernet packets (Layer I)

Ethernet packets start with a 7 byte preamble and 1 byte start-of-frame delimiter

Minimum interpacket gap (IPG, also incorrectly referred to as interframe gap) of 12 bytes

Minimum packet size: 84 bytes

Maximum packet rate: 14.88 Mpps
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Type

Data (L3-PDU)
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Measuring Throughput
Simplest methodology
e Configure device under test (DuT) to forward packets from ports A to ports B

e Apply the highest possible packet rate on ports A of DuT
i g P P P LoadGen : : DuT

e Measure the packet rate on ports B of DuT
Problems Typical two-node measurement setup

e Potentially overloads the DuT, leading to different behavior
e The achieved throughput is not necessarily the highest possible throughput
e When also measuring latency: full buffers lead to worst-case latency

Performance Measurements — Throughput
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Methodology from RFC 2544

e Configure DuT to forward packets from ports A to ports B
e Apply varying rates on ports A

* Find the highest rate at which no packet loss occurs, e.g., by doing a binary
search

Problems
e RFC 2544 calls for a completely loss-free test run

e Some devices lose packets when suddenly faced with a high packet rate due
to power-saving features

e Benchmarks take a long time, especially when testing a lot of configurations
or traffic types

The best methodology depends on the DuT

e Test the behavior of the DuT and adapt the methodology: applying the maximum rate to measure the throughput is often sufficient

e Allow a small packet loss at the beginning or slowly ramp up the rate
e Reduce test time (RFC 2544 recommends at least 60 seconds)

LoadGen : : DuT

Typical two-node measurement setup
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Example: Linux Router, Bandwidth

e Maximum throughput determined by an RFC 2544 test
e Linear increase with packet size, i.e., the size does not matter
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Example: Linux Router, Packet Rate

e Performance leaves room for improvement with small packets
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Example: Comparison

Forwarder Throughput [Mpps]
Line rate at 10 Gbit/s 14.88
Open vSwitch (Linux) 1.88
Linux routing 1.58
FreeBSD routing 1.30
Linux bridging 1.1

e This and the previous tests were using only a single 3.3 GHz CPU core

e Forwarding is a parallelizable problem

* No dependencies between packets of different flows

e How to parallelize?

Performance Measurements — Throughput
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Parallel Packet Processing

Architecture of Network Cards

T |
we

The Network Interface Card (NIC) offers:

e |nterface for incoming transfer (RX queue)
e |nterface for outgoing transfer (TX queue)

Problems:

e Only one core can access NIC simultaneously
e Scalability of multithreaded network applications very poor
e Single core performance limits throughput of whole system

Performance Measurements — Parallel Packet Processing
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Architecture of Modern Network Cards
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Modern NICs have multiqueue support:

e High number of queues (e.g., 2048 queue pairs on Intel E810 25/100 GbE NICs)
e Can be used completely independent from each other

e A queue is typically used by a CPU core exclusively to improve cache locality

e Allows for perfect linear multi-core scaling

Performance Measurements — Parallel Packet Processing 16



Parallel Packet Processing

Parallel Packet Processing
Incoming traffic is distributed

e On a per-packet basis
® Every packet may be processed by a different core
- Slow if protocol state synchronization necessary between cores
- May cause packet reordering

e On a per-flow basis via hashing over protocol, addresses and ports
® One flow is only processed by a specific core
+ Fast if protocol state resides in the cache of the according core
+ Prevents packet reordering within a flow

e Explicitly configured filters
e Flows can be mapped to cores explicitly
- Hashing leads to better balancing
+ Useful to forward traffic to virtual machines

Performance Measurements — Parallel Packet Processing
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Parallel Packet Processing

Multiqueue support influences application design:

e All threads should be pinned

Threads only handle specific flows
This concept does not map the POSIX socket API (1983)

Userspace vs kernelspace
Packet forwarding is typically done in the kernel to improve performance.

Packet processing in the kernel

Low-level driver interface in Linux: NAPI (2001)
NIC uses different interrupts (IRQs) for different queues
IRQs can be pinned to CPU cores, thus achieving multi-core scaling

All previous examples were kernel-based forwarders
In-kernel forwarding is one order of magnitude faster than the socket API
We do not discuss socket-based performance here

Performance Measurements — Parallel Packet Processing
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Parallel Packet Processing
Example: Multi-core Scaling via Hashing
e Example: forward UDP packets with Open vSwitch

e Generate different flows by using multiple UDP source ports
e Linear scaling up to the number of (physical) CPU cores

(o]

Packet rate [Mpps]
O = N W P 01 O
T T T T T
N
w [
+ [
| | | | |

Performance Measurements — Parallel Packet Processing



Performance Measurements

Improving Throughput

Performance Measurements

20



Improving Throughput TI.ITI

Bottlenecks

CPU processing power
Yes: bottleneck in the previous tests

NIC processing power
Sometimes:
e Cheap consumer NICs can often manage less than 500 kpps'
e |Intel XL710 (2x 40 Gbit/s) achieves only 42 Mpps (28 Gbit/s at 64 byte frames)
e Intel E810 (2x 100 Gbit/s) achieves only approx. 100 Mpps (67 Gbit/s at 64 byte frames)
Bus (PCle) bandwidth
PCle 3.0 is 8 Gbit/s per lane. E.g., the Intel XL710 dual port 40 Gbit/s NIC only has 8 lanes.
Memory bandwidth
No: modern PCle devices can access the CPU’s cache directly

CPU caches
Sometimes: depends on the forwarding software and use case (cf. lecture on routing table data structures)

o o NOUREADE
Performance Measurements — Improving Throughput
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https://github.com/luigirizzo/netmap/blob/b249e9cd5ae12c7d57f3d4b5dc4aa8edded924ad/LINUX/README

Improving Throughput TI.ITI
Profiling

e Fastest in-kernel forwarder: 1.88 Mpps at 3.3 GHz (single core)
3.3GHz Cycles

e What is taking 1755 cycles to process a packet?
e Using profiling (perf on Linux) to find out
e perf allows us to see CPU cycles spent in each function

Performance Measurements — Improving Throughput 22
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Profiling

e Fastest in-kernel forwarder: 1.88 Mpps at 3.3 GHz (single core)

3.3GHz Cycles
= 1755
1.88 Mpps Pkt

e What is taking 1755 cycles to process a packet?
e Using profiling (perf on Linux) to find out
e perf allows us to see CPU cycles spent in each function

e Thousands of functions involved, so categorize them

Performance Measurements — Improving Throughput 22



Improving Throughput

Receive

Transmit

skbuff

Memory

Processing

Receiving packets from the NIC, including interrupt overhead

Sending packets to the NIC

skbuffs are kernel data structures containing packet data and metadata, handling them comes with overhead

Memory management overhead

Reaching a forwarding decision

Performance Measurements — Improving Throughput
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Profiling results

3,000 .- r==5Processing skbuff |+
e Memory TX

g —IRX
8 2000 | | o |
5 L L
o o | P
n ! | ! |
Q@
S 1,000 | .
o

Linux Linux Open
bridging routing vSwitch
e About 1000 cycles just to receive and send a packet
® 400 cycles to manage memory and skbuff overhead
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Can we do better?
Shift packet processing entirely into the user space:

e Map DMA buffers into a user space application
e Bypass the entire network stack of the OS

+ Fewer expensive system calls

+ Simplified memory management and data structures

+ Faster than the kernel by an order of magnitude

+ Batch processing throughout the whole application

- Handles only raw packets, protocols need to be implemented in the application
- NIC used exclusively by a single application

- Not APl-compatible with traditional user space applications

e Examples:

e DPDK
® netmap
e Snabb

Performance Measurements — Improving Throughput 25
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DPDK vs. the Linux kernel
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e Open vSwitch can use DPDK for packet IO instead of running in the kernel
e 291 cycles per packet
e DPDK L2FWD forwards packets without consulting a lookup table

® 117 cycles per packet

Performance Measurements — Improving Throughput 2
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Latency

Sources of Latency

Source of delay

Serialization (10 Gbit/s) 10

Propagation (=~ £c) 0.2

Calculation (3 GHz CPU) 3

e Serialization is given by the Ethernet standard

e Propagation is determined by the length of cable

e Reasonable calculations with around 3000 cycles only takes 1us
e Time spent for buffering can be in the range of several us

Buffers matter, processing time often does not.

bit / ns
m/ns
cycles /ns

Performance Measurements — Latency
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Latency

Techniques for packet reception

e (Classic system one interrupt per packet
+ low latency
- low throughput (interrupts are expensive)
e More modern systems process several packets per interrupt
+ high throughput (lower costs per packet)
- high latency
® No interrupts at all

+ low latency depending on polling frequency
+ high throughput
- inefficient at low packet rates (busy waiting for packets)

Performance Measurements — Latency
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Latency

Latency with Batching
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e Open vSwitch on Linux
e Batch processing
e Roughly a uniform distribution
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Latency

Latency with Polling/Busy Wait

N
[

Probability [%]
[

e DPDK on Linux
e \Very small batches
e Roughly a normal distribution
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Latency

Latency through a VM

o o
)] w
I I

o
—_
[

Probability [%]

o

I
50 100 150 200 250
Latency [us]

o

e Forwarding through a VM
e Several buffers
e Along tail distribution, i.e., some packets are significantly slower than the average
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Packet Generators

(P

Source: www.spirent.com

— Packet
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Packet Generators

Properties of packet generators

e Hardware packet generators are
e Precise
e Accurate
e Fast

— Packet
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Packet Generators

Properties of packet generators

e Hardware packet generators are
e Precise
e Accurate
e Fast

e Software packet generators

® Run on cheap commodity hardware
e Flexible

— Packet



Packet Generators

Properties of packet generators

e Hardware packet generators are
e Precise
e Accurate
e Fast
e Software packet generators
® Run on cheap commodity hardware
e Flexible
e Key challenges for software packet generators

® Rate control
e Timestamping

— Packet



Packet Generators

MoonGen

® MoonGen is a software packet generator developed here
e Available as open source software at https://github.com/tumi8/moongen

— Packet
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Packet Generators
MoonGen

Design goal of MoonGen
Combine the advantages of hardware and software packet generators while avoiding their disadvantages.

— Packet
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Packet Generators
MoonGen

Design goal of MoonGen

Combine the advantages of hardware and software packet generators while avoiding their disadvantages.

e Fast: DPDK for packet I/O, explicit multi-core support

e Flexible: Craft all packets in user-controlled Lua scripts

e Timestamping: Utilize hardware features found on modern commodity NICs
e Rate control: Hardware features and a novel software approach

— Packet
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Packet Generators
MoonGen
Architecture

Userscript

Userscript
main

Userscript
worker

data APl ~-

config API

MoonGen Core

\‘I
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Q
NG = NIC

I ]

é
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Packet Generators
Timestamping

Hardware timestamping

e NICs support Precision Time Protocol (PTP) for precise clock synchronization
e PTP support requires hardware timestamping capabilities
e These can be (mis-)used for delay measurements
e Typical precision
e +1.0ns (Intel 100 GbE chips)

® +6.4ns (Intel 10 GbE chips)
e +32ns (Intel GbE chips)

e Some restrictions

® Packets must be UDP or PTP L2 protocol
e Minimum UDP packet size is 84 bytes

e Some NICs support timestamping arbitrary packets (e.g., Intel Xeon D embedded X552, or Intel E810-based NICs)

— Packet



Packet Generators
Rate control
Software rate control in existing packet generators

U e e o o

DuT

NIC

i

Qmemory QN/C Wire

Software tries to push single packets to the NIC
Queues cannot be used, no batch processing
NICs work with an asynchronous push-pull model
This can lead to micro-bursts

Unreliable, imprecise, and bad performance

— Packet
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Packet Generators
Rate control
Hardware rate control

HW rate control

Loadgen
enabled

Qmemory QN/C Wire

e Modern NICs support rate control in hardware

e Limited to constant bit rate and bursty traffic

e Precision controlled by the hardware

- High performance as queues can be used, but inflexible

al — Packet
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Packet Generators
Rate control
Software rate control based on invalid packets

J o 0o 0 @

Vs

HW rate control DuT
disabled

'ﬁ NG| NIC

Loadgen

| Ba] Bl n A=
4
"
C)memory QN/C Wire

Fill gaps with invalid packets p’ (e.g. bad CRC)

NIC in the DuT drops invalid packets without side-effects

Combines advantages of both approaches

Precision limited by byte rate (0.8 ns per byte) and minimum packet size (33 byte)
High performance & high precision

al — Packet
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Packet Generators
Precision of software rate control
4 Mpps with constant bit rate

30
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Inter-arrival time [ns]

e Histogram of packet inter-arrival times, orange line marks target (200 ns) for CBR traffic

e Bursts with an inter-arrival time of 115ns (128 Byte packets at 10 Gbit/s) are particularly bad

— Packet
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Packet Generators
Precision of software rate control
3 Mpps, Poisson process
e Poisson process: exponential distribution of inter-arrival times (PDF: f(x) = Ae~ M)

e Poisson is easier to generate and scale: Poisson processes can be merged (multi-threading)
e Histogram of a poisson process on a logarithmic plot should be a straight line
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Packet Generators

Precision of software rate control

Does it matter?

e Device under test: Open vSwitch on Linux, measuring latency
e Compare CBR with Poisson traffic, change only the traffic pattern between tests

e Different response from the device under test when measuring latency

Latency [us]

160
140
120
100
80
60
40
20
0

—4— CBR MoonGen (Median)
- - - CBR MoonGen (25/75th perc.)
[ | —+— Poisson MoonGen (Median)

Poisson MoonGen (25/75th perc.)

Offered load [Mpps]

— Packet

45



Performance Measurements

Benchmarking and Testing at I8

Performance Measurements

46



Benchmarking and Testing at 18

Further reading

What this lecture did not cover:

Virtual machines

Effects of CPU caches, hyper-threading, energy saving, clock frequency, ...

Other operating systems (FreeBSD, Windows, .. .)
Traditional socket API
Hardware latency measurements

Lots of details (NAPI, interrupts, ...)

ing and Testing at I8
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