

Eexam

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Advanced Computer Networking

Exam: IN2097 / Endterm **Date:** Wednesday 12th February, 2020

Examiner: Prof. Dr.-Ing. Georg Carle **Time:** 10:30 – 11:45

	P 1	P 2	P 3	P 4	P 5	P 6	P 7	
I								$\left[\right]$
II								Ĭ

Working instructions

- This exam consists of 16 pages with a total of 7 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 75 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- · Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at

Problem 1 Quiz (8 credits)

0 1	a)* A router achieves an average throughput of 1 million packets per second for traffic with a packet size of 64 B. The same router achieves almost the same average throughput of 1 million packets per second for traffic with a packet size of 256 B. Explain why the packet size has almost no influence on the throughput.
0 1	b)* A VPN gateway achieves an average throughput of 1 million packets per second for traffic with a packet size of 64 B. The same gateway achieves only a throughput of 0.25 million packets per second for traffic with a packet size of 256 B. Explain why the packet size has this significant impact on throughput.
0 1	c)* What is the shortest possible representation of the given IPv6 address? 2a01:00b0:0000:0000:0000:0a02:0000:2a0f
0 1	d)* Name and shortly explain the main advantage of QNAME Minimization in DNS.
0 1	e)* Name and shortly explain two disadvantages of QNAME Minimization in DNS.

)* As	sum	е у	ou.	wa	nt to	o re	egis	ter	a d	om	ain.	Ex	pla	in t	he	effe	ect a	a pa	arer	nt z	one	ha	s o	n y	our	do	mai	in's	sec	curi	ity.	1
)* Aı	า op	era	ator	for	da	ta c	cent	ers	s Wa	ants	s to	СО	nne	ect 1	wo	of	its (data	а се	ente	ers	usir	na :	a V	XL.	AN	tur	ne	lus	ina	an	ı
iterr usto	et c	onr	nec	tior	ı fro	m i	its I	nte	rne	t Se	ervi	ce	Pro	vid	er.	Wh	at is	s th	e p	rob	lem	ify	you	wa	ant	to ti	ran	smi	t se	ensi	ible	ļ
)* Br	riefly	ex	pla	in t	he į	our	pos	e o	f T	СР	ВВ	R's	Dra	ain	pha	ase.	1															. [
																																
]
					1					1																						

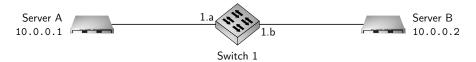
Problem 2 Programmable Packet Processing (10.5 credits)

Computer networks currently shift from single-purpose, fixed-function network devices towards flexible and programmable network devices. This problem investigates the concepts behind these modern network devices.

The researcher Prof. Cleanslate wants to introduce a new **application layer protocol** FancyP. He wants to use programmable network devices to increment a counter contained in the header of FancyP on certain network devices.

0	a)* Prof. Cleanslate has 10 hosts and wants to build an OpenFlow-enabled network. Which components does he need to add to build such a network.
0	b) Explain the tasks of the entities listed in Problem a).
1 🖽	
0 1 2 2	c)* Explain if FancyP can or cannot be realized using OpenFlow.
0 1 2 2	Prof. Cleanslate recently heard about a new concept called Network Function Virtualization (NFV). Now he is interested in realizing FancyP with NFV. d)* Explain if FancyP can or cannot be realized using NFV.
	Prof. Cleanslate knows from a colleague that FancyP can be realized using P4.
0 1 2	e)* Name four different P4 targets.

f) T tati	hei	re a s re	re t gar	hre din	e p g th	oter eir	ntia forv	l im vard	pleı ynit	mei g la	ntat ten	cy a	s of and	f Fa ex	ncy pla	'Ρ (in)	Ope /oui	enF r ra	low. nkin	, NI ng.	=V	& F	94).	Ra	nk	the	diff	ere	nt i	mpl	em	en-
																														_		
																														\dashv		
																															\neg	


Problem 3 P4 Forwarding (13 credits)

This problem investigates a Software-Defined Network (SDN) powered by P4. The source code of a P4 switch program is given in Listing 1.

```
header eth_t
                        { bit <48> dstAddr;
                          bit <48> srcAddr;
 3
                          bit <16> etherType; }
    header ipv4_t
                        { bit <4> version;
 5
                          bit <4> ihl;
                          bit <8> tos;
                          bit <16> totalLen;
 7
                          bit <16> identification;
 9
                          bit <3> flags;
                          bit <13> fragOffset;
11
                          bit <8>
                                  ttl;
                          bit <8> protocol;
13
                          bit <16> hdrChecksum;
                          bit <32> srcAddr;
                          bit <32> dstAddr; }
15
    struct meta
                        { /* unused */
17
    struct headers
                        { eth_t
                                   eth;
                          ipv4_t ipv4; }
19
    parser ParserImpl(packet_in packet, out headers hdr, inout meta meta, inout standard_metadata_t
        std_meta) {
21
      state parse_eth {
        packet.extract(hdr.eth);
23
        transition select(hdr.ethernet.etherType) {
                       : parse_ipv4; // ******* see Problem a)
25
          default: accept;
        }
27
      state parse_ipv4 {
29
        packet.extract(hdr.ipv4);
        transition accept;
31
      }
      state start {
33
        transition parse_eth;
35
    }
37
    control Pipeline (inout headers hdr, inout metadata meta, inout standard_metadata_t std_meta) {
      action drop()
39
        mark_to_drop();
41
      action ipv4_fwd(bit<16> egress) {
        std_meta.egress_port = egress;
43
      table forward {
45
        actions = {
          ipv4_fwd;
47
          drop;
49
          std_meta.ingress_port: exact;
          hdr.ipv4.srcAddr: exact;
hdr.ipv4.dstAddr: exact;
51
53
        size = 2;
        default_action = drop();
55
57
      apply {
        if (hdr.ipv4.isValid()) {
          forward.apply();
59
        }
61
      }
    }
63
    control DeparserImpl(packet_out packet, in headers hdr) {
65
                                                      **** see Problem f)
    }
```

Listing 1: Simple P4 program

For the following problems use the network topology given in Figure 3.1. Switch 1 is a P4 switch running the P4 program of Listing 1.

ne 24:	: parse_ipv4;			
for Switch 1 so Ser Servers A or B shou	vers A and B can ald be dropped. Us	communicate with eac	aining correct forwarding rules. In other via IPv4. Frames not oring in Figure 3.1. You can assume to pectively.	ginating
Match field(s)	Key	Action	Action data	
	<u> </u>			

e)* The P4 program in Listing 1 uses the exact match type. Name two other match types supposed by the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
f)* Create a valid deparser for the P4 program in Listing 1 (Line 65).
i) Greate a valid deparser for the F4 program in Listing 1 (Line 65) .

Problem 4 Network Calculus (4.5 credits)

This problem investigates the derivation of performance guarantees for a given network using Network Calculus.

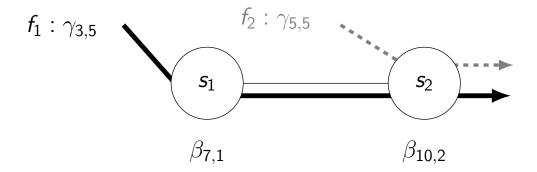


Figure 4.1: Network topology and flow description

Consider the network topology and flow definitions given in Figure 4.1. Flow f_1 traverses the Servers s_1 and s_2 . Flow f_2 traverses the Server s_2 .

The flows are defined as token-bucket arrival curves $\gamma_{r,b}$ with Rate r and Burst b.

The servers are defined as rate-latency service curves $\beta_{R,T}$ with Rate R and Latency T.

Assume preemptive static priority scheduling at both servers. Furthermore, assume Flow f_1 has a low priority and Flow f_2 has a high priority.
a)* Calculate the residual service curve for Flow f_1 at Server s_1 . Specify your end result in the form $\beta_{R,T}$.
b)* Calculate the residual service curve for Flow f_1 at Server s_2 . Specify your end result in the form $\beta_{R,T}$.
c) Use the concatenation theorem to combine the two residual service curves into a single end-to-end service curve for f_1 . Specify your end result in the form $\beta_{R,T}$.
d) Calculate the delay bound for Flow f_1 traversing the Servers s_1 and s_2 . Make use of the concatenation theorem and consider the scheduling strategy as well as the influence of other flows. Hint: Re-use results from previous sub-problems.

Problem 5 Transport Layer (12.5 credits)

This problem is about transport layer protocols. The Transmission Control Protocol (TCP) is widely used for its reliability property. Lost segments can be detected and are retransmitted by the sender. Beside the reliable data transfer TCP also offers *Flow Control* and *Congestion Control*.

0	a)* How can a TCP receiver detect lost segments in the byte stream?
₁	
0	b)* Briefly explain the Fast Retransmit algorithm for TCP.
0	c)* Explain one situation when Fast Retransmit is not triggered.
' L_L _	
0	d)* What is the goal of Flow Control?
0	e)* How is the concept of Flow Control implemented in TCP?
ĬШ.	
1	
	f)* Name three different classes of congestion control algorithms.
	Ty Name tinee different classes of congestion control algorithms.
0	g)* Name one advantage and one disadvantage of TCP Vegas.
ĬШ	
¹ ——	

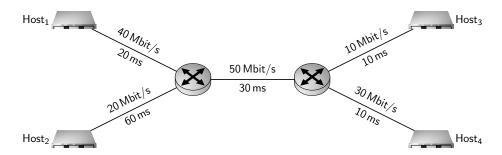


Figure 5.1: The maximum transmission rate and propagation delay is noted for each link.

In the following the network shown in Figure 5.1 is used. There, two TCP flows are started:

- Flow₁ sends data from Host₁ to Host₃
- Flow₂ sends data from Host₂ to Host₄.

h)* Compute the Bandwidth Delay Product (BDP) for Flow ₁ and Flow ₂ in kbit.	
	0
	1
	2
iii law is the DDD related to connection control	
i)* How is the BDP related to congestion control?	0
	1
In HTTP/2 all files are sent multiplexed over one TCP connection. This can result in Head-of-Line (HoL) Blocking.	
j)* Briefly explain how TCP causes HoL Blocking on the transport layer in this case.	0
	1
k)* How does the QUIC protocol solve this issue?	0
	1

Problem 6 Wireshark (10.5 credits)

According to the OSI model network protocols are distributed to seven different layers each containing several protocols. In this problem a packet is analyzed referring to the involved protocols.

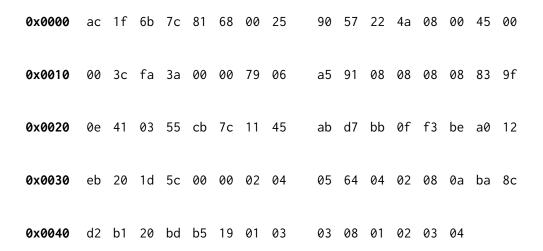
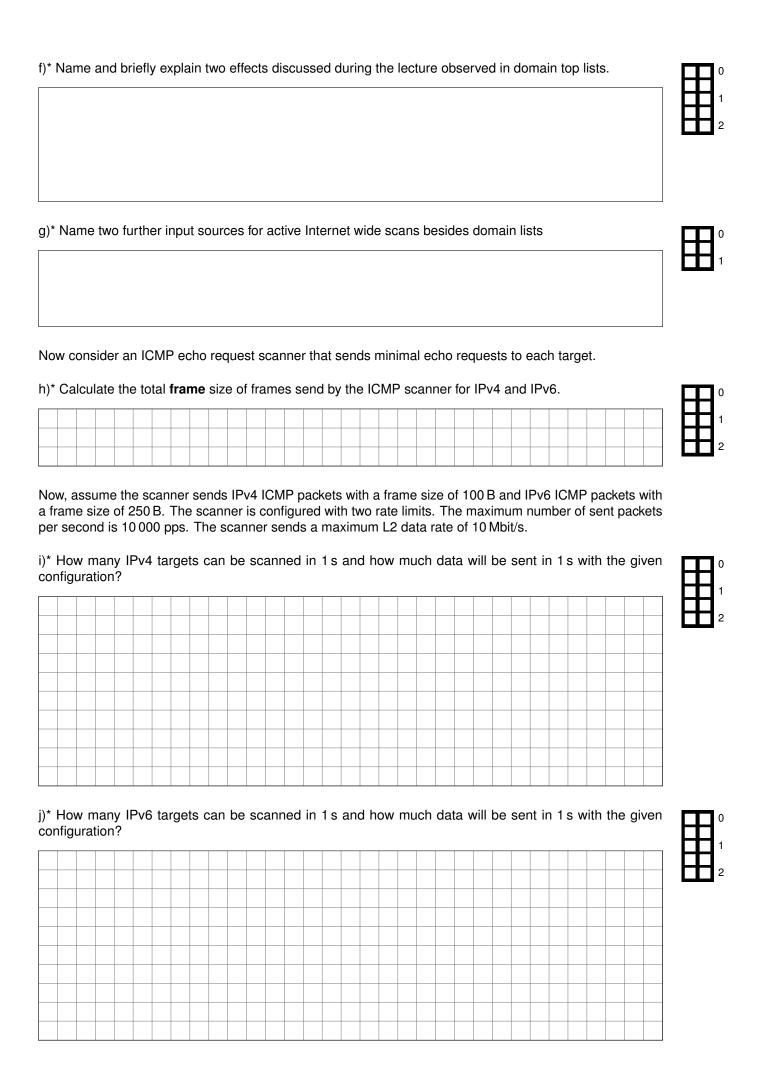


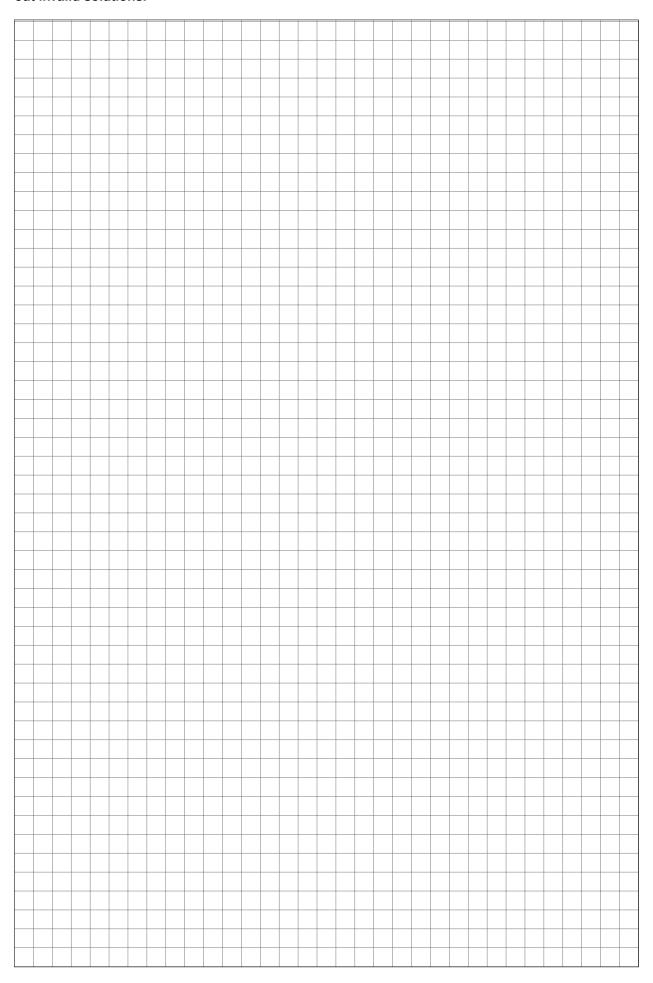
Figure 6.1: Hexdump of a complete Ethernet frame including FCS

a)* Mark and name all parts of the protocol specific information for layer 2 in Figure 6.1 **Note:** Put your solution directly in Figure 6.1

In the next four subproblems you are asked to identify which protocols were used for each layer. For each question do the following:


- · mark the corresponding bytes in the hexdump and
- · write the corresponding bytes in the solutionbox.

0	b)* Name the L3 protocol.
0	c) Name the L4 protocol.
0	d) List the flags which are set in the L4 protocol.


e) Identify the application layer protocol.								0																
																								1 2
f) [Dete	erm	ine	the	e ler	ngth	n of	the	L4	he	ade	er ir	n by	/te.										0 1
g) Determine the size of the L4 payload in byte.													0 1											

Problem 7 Internet Measurements (16 credits) Internet-wide measurements are a major research area in the field of networking. This problem investigates properties and important considerations regarding active network scans. a)* Name two ethical considerations relevant for Internet wide measurements. b)* Explain why non BGP announced Prefixes should not be scanned. c)* Given we want to scan the routable addresses in 138.0.0.0/8, how many targets are we going to scan with the prefixes in following table having an entry in the routing table? **Routed Prefixes** 138. 64. 0.0/11 Hint: The table might contain more specific an-8. 0. 0.0/12 nouncements. 138. 0. 0.0/12 130.120. 0.0/16 Hint: The answer does not need to compute 138.132. 0.0/16 the actual number of targets, the computation 138. 30. 0.0/20 including power of two terms is also valid. Your 138.138. 0.0/20 solution approach should be comprehensible. 138. 0. 2.0/22 138.138.12.0/22 d)* Assume that we now want to scan a /8 subnet in IPv6. Explain why that is not feasible.

e)* What Resource respectively.	e Record (RR) Type has	to be queried to resol	ve domain lists to IPv4 a	nd IPv6 addresses

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

