Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich

Advanced Computer Networking (ACN)

Router Project – Description

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich

Registration

Project

Participation in the ACN project is optional but highly recommended to gain hands-on experience with computer networks

How do you participate?

- First, request a GitLab repository if you have not requested a repository for the exercise yet: https://acn.net.cit.tum.de/auth
- Merge requires resources from template repository: git remote add template git@gitlab.lrz.de:acn/terms/2025ws/template.git git remote update git merge --allow-unrelated-histories template/router-project

Router Project Packet processing software

Usually the network stack is part of your OS

- Entire network stack provided
- Standardized socket interface

Reasons for poor network performance over BSD sockets:

- Dynamic memory allocation
- Costly context switches (user space kernel space)
- Copying of packet data

Router Project Userspace packet processing

Known Userspace-Frameworks

- Data Plane Development Kit (DPDK)
- PF_RING ZC
- netmap
- Linux eXpress Data Path (XDP)

Acceleration techniques:

- Memory allocation only done once
- No copying of packet data
- Batch processing of packets
- Detect new packets by polling the NIC (lower number or no interrupts)
- Reduced functionality (raw Ethernet frames)

Scientific testbeds

- Platforms to implement, debug, and evaluate ideas and concepts
- Execution of experiments, e.g., benchmarking hardware and software components
- Important property: reproducibility of experiments

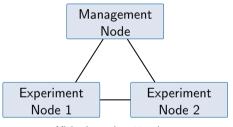
Scientific testbeds

- Platforms to implement, debug, and evaluate ideas and concepts
- Execution of experiments, e.g., benchmarking hardware and software components
- Important property: reproducibility of experiments

Plain orchestrating system (pos)

 pos is a framework for operating scientific testbeds developed in our research group

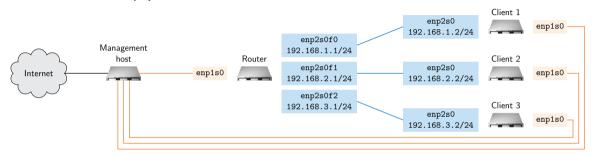
Scientific testbeds


- Platforms to implement, debug, and evaluate ideas and concepts
- Execution of experiments, e.g., benchmarking hardware and software components
- · Important property: reproducibility of experiments

Plain orchestrating system (pos)

 pos is a framework for operating scientific testbeds developed in our research group

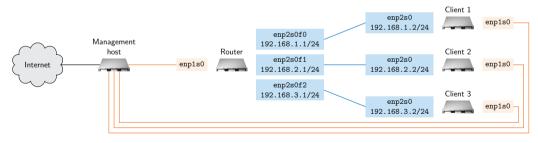
Features of pos


- Automation of experiment workflow
- Live images
 - Experimenters **must** automate configuration
 - No residual state between reboots on experiment nodes
- Other researchers can easily (re-)run experiment
- → Experiments become reproducible

Minimal experiment topology

Infrastructure for the router project

- Testbed consists of two node types:
 - Management node: Providing SSH and Internet connectivity to experiment nodes
 - Experiment nodes (router and clients): Used for the actual experiment
- Separate management (orange) and experiment (blue) networks
 - Separation ensures measurements that are not impacted by management traffic

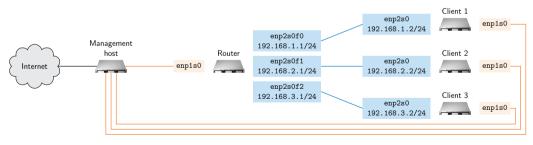

Project software router

- Implement a software router
- Using the packet processing framework DPDK
- Programming language: C/C++
- You get virtual machines for setting up your router
- Submissions using Git repository (the same repo used for tutorial hand-ins)
- Project deliverables are graded
- Project description available: https://acn.net.cit.tum.de

Problem 1 (1 credits, deadline: November 20, 2025, 4:00 PM)

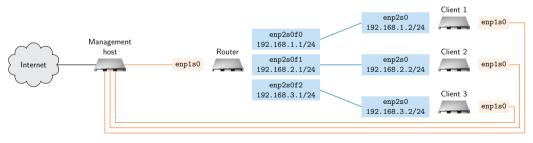
- Login into your virtual machines
- Configure the testbed setup
- Compile & configure DPDK
- Test your setup with a simple DPDK forwarding example
- Submission: scripts configuring router and clients

Testbed topology and containing addresses for router and client nodes


1a) Default route

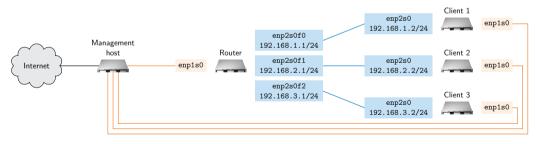
- Your are connected via SSH to a experiment node
- The SSH connection uses the default route
- Warning: removing the default route is a bad idea

1b) Experiment script


- Nodes are not booted:
 - Allocate nodes
 - Configure image
 - Reboot machines
 - Execute scripts for each node
- Hint: Have a look at the pos-examples repo

1c) Client configuration

- Nodes are not configured:
 - Regular Linux
 - Config tool to use ip (do NOT use ifconfig)
 - Start enp1s0 interfaces
 - Set correct addresses
 - · Configure routes to other clients



Testbed setup

1d) Router configuration

- Nodes are not configured:
 - · Router interfaces controlled by DPDK
 - Regular Linux tools cannot be used for configuration
 - Use the DPDK we provide (see exercise sheet)
 - Read the README to compile and install DPDK
 - Try out the forwarding app (fwd)

Testbed setup

1e) Test Forwarder

- Configure client nodes
- Run forwarder on router node (forwarding between enp2s0f0 and enp2s0f1)
- Ping Client 2 from Client 1
- Observe packets on Client 2 using tcpdump

1f) Bidirectional Forwarder

- The forwarder forwards traffic unidirectionally
- · Extend the forwarder to forward in both directions
- Use a second thread

Problem 2 (4 credits, deadline: December 18, 2025, 4:00 PM)

- Command line interface
- Router should answer the clients' ARP requests
- Sanity checks on IP packets
- Do routing decision and forward packets accordingly

Problem 3 (3.5 credits, deadline: January 15, 2026, 4:00 PM)

- Implement a routing table
- Algorithm of choice: DIR-24-8
- Integrate routing table into your software router

Problem 4 (1.5 credits, deadline: January 29, 2026, 4:00 PM)

- Measure performance
- Plot your measurement results
- Create a test report of your findings