form;
Technical University of Munich

Advanced Computer Networking (ACN)

QUIC Project — Description
Prof. Dr.-Ing. Georg Carle

Benedikt Jaeger, Marcel Kempf, Johannes Zirngibl

Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Introduction

New transport protocol, originally developed by Google to
replace the TCP/TLS stack

Recently (May 2021) standardized by the IETF as RFC 9000

Implemented on top of UDP in the user space
— several implementations exist

Includes features like flow and congestion control, stream
multiplexing, encryption with TLS 1.3, and many more

Detailed lecture about QUIC later this year

Design Goals of QUIC:

Decrease handshake delay
Get rid of head-of-line blocking
Faster development cycles
Middlebox resistance

IP mobility

(_HTTPB)
HTTP/2 HITEs

Application

QuIC
Transport TCP (T)
Network [P]

Goals of the Project:

e Familiarize with QUIC in general and a library

e Implement a working QUIC client and server

e Compare interoperability with other QUIC applications
e Optimize throughput

Introduction

m

Registration

How do you participate?
e First, request a Gitlab repository if not done already for the exercise:
https://acn.net.in.tum.de/auth

® Merge requires resources from template repository:
git remote add template git@gitlab.lrz.de:acn/terms/2023ws/template.git

git remote update
git merge --allow-unrelated-histories template/quic-project

® You are only allowed to participate in one project (QUIC or Router)
How to make clear on which project you are working?

e |n the root directory of your Git repository you find a file named project.yml
e We will only consider your submission for the QUIC project iff the file contains only the following line:

project: quic

® We use the content of this file to decide which project we correct for a certain deadline
e [f you do not follow these instructions, we will not correct and grade your submission

Registration

https://acn.net.in.tum.de/auth

Infrastructure

e We use the LRZ Gitlab as infrastructure for this project (see exercise/instructions.pdf)

e You will get access to some shared repositories as well as a personal working repository

Gitlab CI

e This allows you to automatically compile your applications and access the artifacts via Gitlab

LRZ Gitlab

pull source code

Gitlab Runner

.
VM Artifacts

Hardware Testbed

10 Gbit/s

» build (e.g. compile)

> test (e.g. on localhost)

» you can use Docker
images here

> is executed on each
push

Client Server
> measurement between
your client and server
> measurements between
each client server pair
> is executed by us, e.g.
once per day

Infrastructure

Infrastructure
Pipeline

build

» build client and
server application
(if necessary)

» artifacts can be
used in the next
stages and are
stored in Gitlab

» e.g. we can pull
the compiled
binaries

Problem 1

Problem 2

test

prepare
environment

run client/server
applications

runs on localhost
provide output if
test was
successful or not

deploy

prepare
environment
run client/server
applications

runs on real
hardware in our
testbed

provide output of
the measured

performance (e.g.
transmission rate)

Problem 3]—»[Problem 4]

Infrastructure

Schedule
Problem 1: until November 28, 2023, 4:00 PM

e Familiarize with the QUIC protocol

e Choose one implementation

e Answer basic questions about QUIC and the implementation
e Deploy the Interop Runner on your VM and run a simple test

Problem 2: until December 19, 2023, 4:00 PM

e Setup client and server applications and environment

e Run basic functionality tests
Problem 3: until January 16, 2024, 4:00 PM
e Implement all functionality tests
Problem 4: until January 30, 2024, 4:00 PM

e Prepare testbed measurements
e Optimize parameters and compare results
e Summarize findings in a short report (2-3 pages)

Schedule

Project - Problem 1

Deadline: November 28, 2023, 4:00 PM

Tasks:

Familiarize yourself with QUIC and the standard
Select one of the offered implementations. You will work with the selected one for the rest of the project

® |squic (https://github.com/1litespeedtech/lsquic)
® quic-go (https://github.com/lucas-clemente/quic-go)
e quiche (https://github.com/cloudflare/quiche)

If you want to use another implementation:

! Everything except aioquic' is allowed
! You will not get support from our side if you use an implementation other than the suggested ones

Answer some general questions about QUIC as well as implementation specific questions
Deploy the Interop Runner on your VM and run a simple test
Optional: compile and execute example client server applications and try to get them running

1 https://github.com/aiortc/aioquic

Project - Problem 1

https://github.com/litespeedtech/lsquic
https://github.com/lucas-clemente/quic-go
https://github.com/cloudflare/quiche
https://github.com/aiortc/aioquic

	Introduction
	Registration
	Infrastructure
	Schedule
	Project - Problem 1

