
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Advanced Computer Networking
IN2097, Winter Semester 2024/25

Project - Designing a Software Router (10 credits)

Last updated: November 17, 2024 at 2:30pm

The goal of this project is the development of a software router. We use the high-speed packet processing
framework DPDK to implement a high-performance software router. To simplify the implementation of the router,
we provide access to our testbed, where the software router can be developed and tested. The router will only
implement IPv4 and associated protocols to simplify the router for the purpose of this exercise.

1 Academic Misconduct

We check your submissions for plagiarism. Participants violating the academic code of conduct will be excluded
from the bonus system.

It is allowed and encouraged to discuss the assignment with other students. However, the programming
itself has to be done by each student individually. Group work for writing the code is not allowed. Google,
StackOverflow, and other Internet sources are allowed (as long as no license is violated). If your submission
contains copied code, it has to be clearly marked as such, and the original source has to be referenced. For
example, StackOverflow provides a share link. Use that to obtain a link, which then has to be added to your
source code. In any case, you have to understand the code you submitted, which means you must be able to
explain how it works.

See also code of conduct by our department:

• en: http://go.tum.de/103707

• de: http://go.tum.de/750259

2 Submission via git

For this project, we use git to handle the submissions. We use the same repository for our tutorials. If you do
not have access to your repository yet, please read the tutorial instructions and perform the described steps to
get access.

3 Testbed

Scientific testbeds are used to execute experiments, such as benchmarking hardware or software components.
We aim to create reproducible experiments. Therefore, we automate the entire experiment workflow to minimize
the chance of human error or misconfigurations during experiments. Our research group created a framework
to manage testbeds called the plain orchestrating system (pos) [2]. pos ensures the creation of reproducible
experiments using a specific experiment workflow. For the purpose of this lecture, we created a testbed providing
a small network of four connected nodes (1 router, 3 clients) for every student. During the course of this project,
you will get to know the pos framework, its experiment workflow, and its features.

3.1 Reservation of testbed resources

A reservation is needed to use the resources of the testbed. Therefore, we created a calender to enter the
timeslots and the type of resources for a planned testbed usage. The calendar can be accessed from the CLI

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller
acn@net.in.tum.de 1

http://go.tum.de/103707
http://go.tum.de/750259
https://acn.net.in.tum.de/exercise/instructions.pdf


Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Router

enp1s0
enp2s0f1

192.168.2.1/24

enp2s0f0

192.168.1.1/24

enp2s0f2

192.168.3.1/24

enp2s0

192.168.1.2/24

enp2s0

192.168.2.2/24

enp2s0

192.168.3.2/24

Client 1

Client 2

Client 3

enp1s0

enp1s0

enp1s0

Management
host

Internet

Figure 1: Testbed with management host, clients and router

(cf. Section 3.2) or via the web interface1. Multiple identical setups are available for testing, each setup consists
of a topology with a single router and three clients as depicted in Figure 1. The router and clients with the same
prefix (e.g., i1) are directly connected. Each testbed user has access to multiple setups.

Fair use policy: Every user can only allocate two future timeslots with a maximum length of 6 h. Please only
allocate the minimum amount of resources necessary for testing to also give other people a chance to use the
testbed.

3.2 Accessing the Management Node of the Testbed

The testbed consists of a single management node and multiple experiment nodes. Figure 1 shows the
management host and the four experiment nodes used for implementing this project. The management
node acts as the gateway to the testbed. All experiment nodes are connected to the management node via a
management network (orange connections). This management network is separate from the experiment network
(blue connections). This separation is necessary to avoid any impact of management traffic on measurements
using the experiment network. The management node of the testbed can be accessed via SSH using the
following command in Listing 1.

ssh -p 10022 gitlabUserID@svm0020.net.in.tum.de

Listing 1: Connecting to the management node (replace gitlabUserID with your actual user ID before trying to log in)

We use your GitLab user ID as the username and the SSH keys you uploaded to the LRZ GitLab for authentica-
tion. You can find your GitLab user ID in the web interface (cf. Figure 2). Make sure that at least one of your
personal SSH keys known to GitLab is available on your local machine before trying to log in.

After logging in to the testbed host, you can access the pos CLI, the central tool to use the testbed. The pos CLI
offers extensive documentation; just type in the pos command. An example can be found in Listing 2.

1https://svm0020.net.cit.tum.de/calendar

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller
acn@net.in.tum.de 2

https://svm0020.net.cit.tum.de/calendar


Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Figure 2: Location of Gitlab ID in the web interface

svm0020% pos
Usage: pos [OPTIONS] COMMAND [ARGS ]...

Plain -orchestrating service to access and manipulate the test nodes of this
testbed.

Quickstart:

0. Look at available nodes:
$ pos nodes list
$ pos allocations list

1. Allocate testnodes you want to use for one experiment:
$ pos allocations allocate nodeA nodeB [...]

2. Configure the nodes (per node):
$ pos nodes image nodeA debian -stretch
$ pos nodes reset nodeA

3. Execute commands on the nodes (per node):
$ pos commands launch nodeA -- echo $(hostname)

You may use command prefixes , e.g. "pos n l" for "pos nodes list"

Options:
--version Show the version and exit.
--color / --no -color
-h, --help Show this message and exit.

Commands:
allocations Define nodes taking part in an experiment.
calendar Testbed calendar
commands Execute commands on testbed nodes or roles.
hooks Configure hooks in posd that can be used as callbacks
images List available/add new images.
jobs Jobs (scripts) to be executed by pos at a given time
nodes Access testbed nodes or roles.
roles Group nodes into logical experiment roles.

Listing 2: pos CLI example on management node with help text output

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller
acn@net.in.tum.de 3



Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

3.3 Accessing the Experiment Nodes

Figure 1 shows the topology used for implementing this project. A router and three client nodes are available.
The router is connected to each client via a separate connection. The router node has more RAM (8 GB)
and three CPU cores compared to the client nodes, which have 4 GB of RAM and a single virtual CPU core.
Every machine has a management interface called enp1s0 to connect the respective experiment node to the
management node. This interface provides SSH and Internet connectivity, i.e., this connection will not be
interrupted when messing around with the other interfaces and DPDK.

Participants get their own set of experiment nodes for the project. The names of the experiments can be queried
using the pos CLI, shown in Listing 3. This command outputs a table that lists the names (ids) of all available
nodes and additional information, such as the configured image.

svm0020% pos nodes list

id type status allocation image updated

i0-client1 host ERR booting 1685 _231103_210856_811477 debian -bookworm 48h
i0-client2 host booted 1685 _231103_213724_568848 debian -bookworm 48h
i0-client3 host unknown None boot -local 6d
i0-router0 host unknown None boot -local 6d

Listing 3: pos command to list the available nodes of the testbed

To log in to a specific node, use the SSH command on the management node followed by the ID of the respective
experiment node. Keep in mind that the node has to be booted before it can be accessed. Listing 4 shows
several nodes. According to the printed output, only the experiment node with the ID i0-client2 is currently in
a booted state and can be accessed via SSH.

svm0020% ssh i0-client2

Listing 4: Logging in to a booted experiment node

To set up the nodes that are currently in a non-booted state, several steps have to be performed:

1. Allocate the respective node(s).

2. Configure an image to be booted.

3. Reset the machines to load the configured image.

4. Wait for the machine to become available.

Listing 5 lists the respective commands to perform the previously listed steps. We also provide a more extensive
example script2.

svm0020% pos allocations allocate i0-client1
Allocation ID: 1685 _231105_214817_869983 (i0-client1)
Results in /srv/testbed/results /1685/ default /2023 -11 -05_21 -48-17 _869983
svm0020% pos nodes image i0-client1 debian -bookworm
svm0020% pos nodes reset i0-client1

Listing 5: Allocating and preparing an experiment node with id i0-client1

2https://gitlab.lrz.de/acn/terms/2024ws/testbed/pos-examples.git

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller
acn@net.in.tum.de 4

https://gitlab.lrz.de/acn/terms/2024ws/testbed/pos-examples.git


Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

3.4 Rebooting Experiment Nodes

Nodes can be rebooted from the management node using the command in Listing 6. This also works if the
connection between the experiment node and the management node is no longer available, e.g., if the NIC
driver was removed.
Important note: All experiment nodes use ramdisks as storage; resetting a node erases everything that was
written to this storage. Only your home folder on the management node is permanent.

svm0020% pos nodes reset i0-client1

Listing 6: pos command to reboot a node with id i0-client1

3.5 DPDK Framework

To implement your router, we provide a framework, containing DPDK and a simple forwarding application based
on DPDK. We use a slightly adapted version of DPDK for this project. You must use this version for all of the
problems of this project to get the bonus. You can get it using the command in Listing 7:

git clone https://git:glpat-MuwDUtiuYfQcno43swz_@gitlab.lrz.de/acn/terms/2024ws/testbed/dpdk-framework.git

Listing 7: Cloning the DPDK framework repository

3.6 Template Repository

The submission follows a specific file and folder structure. To simplify the creation of this folder structure, we
provide a template that can simply be merged into your own repository. To merge the folder structure into your
own personal repository, execute the commands of Listing 8.

git remote add template git@gitlab.lrz.de:acn/terms/2024ws/template.git
git remote update
git merge --allow -unrelated -histories template/router -project

Listing 8: Merging the router-project branch

After merging commit and push your changes.

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller
acn@net.in.tum.de 5



Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Problem 1 Setup 1 credit

The deadline for this problem is November 26, 2024, 4:00 PM.

This exercise is designed to get to know the testbed and to set up the DPDK framework and the client machines,
respectively. As part of this setup must be repeated in case of a node reboot, you create scripts to automate
this step. Furthermore, a simple DPDK forwarding example is used and extended to test your setup.

Use the commands specified in Subsection 3.6 to create the folder structure required for submission.

Default route You are connected to an experiment node via SSH. Your SSH connection uses the default route
installed on your local machine.

a) Why is it a horrible idea to remove this default route? Put your answer into a file named answer.md in the
router-project1 subfolder of your git repository.

Experiment script Create an experiment script that allocates all four experiment nodes, loads the provided
parameter yaml files for the respective nodes, configures the image, and finally reboots all nodes with the
configured image. After that, the experiment script should execute the client.sh and router.sh scripts in the
router-project1/node folder for clients and router on the respective experiment nodes. These experiment node
scripts are currently empty. The following subproblems will provide content for both scripts.

Hint: Have a look at the example script2.

b) Put the final script (experiment.sh) in the router-project1 subfolder of your git repository.

Clients The configuration for the client experiment nodes involves three steps:

1. Assign the correct IP addresses (see Figure 1)

2. Set the interfaces up

3. Configure the routes to their respective neighboring clients

These steps must be repeated after a reboot of a node. Create a script to automate these steps for each client
individually. Use the Linux tool ip [1] for configuration (no credits for ifconfig). After executing the script, the
node must still be reachable over SSH via the management interface.

The same steps must be executed on all three client nodes. However, the configured addresses differ slightly
between clients. To handle this problem efficiently, pos offers the possibility to parameterize scripts on a per-
node basis. Parameters can be defined in yaml files, configured on the management node (pos allocations
set_variables), and queried on the experiment nodes (pos_get_variable). An example for such a configuration
can be found in the example code at
https://git:glpat-qGxMJZXcUPk1hvNWAjps@gitlab.lrz.de/acn/terms/2024ws/testbed/pos-examples.git.

c) Create a script that configures the three clients (client.sh, client1.yml, client2.yml, and client3.yml)
and put them into the router-project1/client subfolder in your git repository.

Router The steps to set up and compile the DPDK framework can be taken from the README file in the
framework repository3. Keep in mind that a configuration of the interfaces via standard Linux tools is not possible
after the interfaces are managed by the DPDK application. DPDK uses increasing numeric interface identifiers
ordered by the PCI address of the device, i.e., the router uses the interface ids 0 to 2 if all VirtIO interfaces are
bound to DPDK.

The DPDK setup must be repeated after a restart. Create a script to automate these steps so that a DPDK
application can be started after running this script.

Hint: You can reboot any experiment node anytime from the management node to test your script.

3https://gitlab.lrz.de/acn/terms/2024ws/testbed/dpdk-framework.git

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller
acn@net.in.tum.de 6

https://gitlab.lrz.de/acn/terms/2024ws/testbed/dpdk-framework.git


Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Note: Interfaces that are bound to the DPDK driver will NOT be listed in tools such as ip any longer.

d) Create a script that configures the router (router.sh) and put it into the router-project1/router subfolder
in your git repository.

Forwarder test To test your setup, a simple unidirectional forwarding application (fwd) is provided. This
application takes the incoming Ethernet frames from a source interface (e.g., -s 0), increments the MAC source
address by one and sends it via a destination interface (e.g., -d 1).

To see if the forwarder actually works, use the tools ping and tcpdump. Run the forwarder on the router node
and try to ping the client2 node from the client1 node on eth1, respectively. On the client2 node, run tcpdump on
eth1.

e) Which kind of packets do you expect to arrive at client2 and what kind of packets do you actually observe.
Briefly explain the observation. Put your answer into the previously created answer.md.

Bidirectional forwarder fwd only forwards unidirectionally, i.e., it forwards packets from a specified source
interface port to a destination interface port. Extend the forwarder example to support bidirectional forwarding,
i.e., forwarding from the source interface port to the destination interface port and vice versa.

Hint: By creating a multi-threaded forwarder this exercise can be solved with less than five lines of code.

f) Update the original fwd.c file and put it into the router-project1 subfolder in your git repository.

Commit and push the contents of the router-project1 subfolder in your git repository.

Problem 2 Routing 4 credits

The deadline for this problem is December 19, 2024, 4:00 PM.

The problem description will be released at a later point in time.

Problem 3 Routing table 3.5 credits

The deadline for this problem is January 14, 2025, 4:00 PM.

The problem description will be released at a later point in time.

Problem 4 Measurement 1.5 credits

The deadline for this problem is January 30, 2025, 4:00 PM.

The problem description will be released at a later point in time.

References

[1] ip(8) - Linux man page. https://linux.die.net/man/8/ip.

[2] Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, and Georg Carle. The pos framework: a
methodology and toolchain for reproducible network experiments. In CoNEXT ’21: The 17th International
Conference on emerging Networking EXperiments and Technologies, Virtual Event, Munich, Germany,
December 7 - 10, 2021, pages 259–266. ACM, 2021.

Prof. Dr.-Ing. Georg Carle, Sebastian Gallenmüller
acn@net.in.tum.de 7

https://linux.die.net/man/8/ip

	Academic Misconduct
	Submission via git
	Testbed
	Reservation of testbed resources
	Accessing the Management Node of the Testbed
	Accessing the Experiment Nodes
	Rebooting Experiment Nodes
	DPDK Framework
	Template Repository


