
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Advanced Computer Networking (ACN)

IN2097 – WiSe 2023–2024

Prof. Dr.-Ing. Georg Carle

Sebastian Gallenmüller, Max Helm, Benedikt Jaeger,
Marcel Kempf, Patrick Sattler, Johannes Zirngibl

Chair of Network Architectures and Services
School of Computation, Information, and Technology

Technical University of Munich

Content Delivery Networks (CDN)

Introduction

Caching

Hashing

TCP/HTTP-based Load Balancing

DNS-based Load Balancing

Anycast-based Load Balancing

CDN in practice

Bibliography

Content Delivery Networks (CDN) 1

Content Delivery Networks (CDN)

Introduction

Caching

Hashing

TCP/HTTP-based Load Balancing

DNS-based Load Balancing

Anycast-based Load Balancing

CDN in practice

Bibliography

Content Delivery Networks (CDN) 2

Introduction
Motivation - Internet Development - North America

2009 2010 2011 2012 2013 2014 2015 2016
0

10

20

30

40

50

60

70

80

Year

S
ha

re
in

%

Video
Filesharing

Web

Data obtained from Sandvine

Data sources: [1]–[6]

Content Delivery Networks (CDN) — Introduction 3

Introduction
Motivation

Problems

• Websites often need to handle a lot of traffic

• Video on demand is mainstream and replacing TV

• Videos need a lot of bandwidth

• Connecting to a server far away introduces latency

• Latency is the foe of user satisfaction

• Distributed Denial of Service (DDoS) attacks are common (e.g., Mirai botnet)

Content Delivery Networks (CDN) — Introduction 4

Introduction
Goal

What do we want to achieve?

• Distribute the load over a lot of content servers

• Have servers physically as near as possible at the customer site

• Content servers at the “end” of the CDN serving static content (e.g., videos) are called “edge-caches”

• Edge-caches may be placed in customer ISP networks (Netflix does that)

• Distributing load can mitigate DDoS

• Caching can reduce the amount of traffic between ASes

Benefits

• For the consumer:
• Lower latency & higher reliability

• For ISP of the consumer:
• Lower traffic, reduced costs & better service quality

• For content providers:
• Lower traffic, reduced costs & better service quality

Content Delivery Networks (CDN) — Introduction 5

Caching
Cache hierarchy

Archive

Europe Asia America

.Consumers

Edge caches

Regional
caches

Full content
archive

Low
erdistance

to
custom

er

• Archive holds all the data (e.g. the whole video library)
• Archive may, as well, be distributed itself

• Regional caches get their content from the archive
• Edge caches (located at ISPs / IXPs) get their content from their regional cache
• If a cache does not hold the requested content, it asks its parent
• Real deployments may have more levels / be more sophisticated

Content Delivery Networks (CDN) — Introduction 6

Caching
Typical architecture

Internet

Client 1

Client 2

Load Balancer

Content Server 1

Content Server 2

Content Delivery Networks (CDN) — Introduction 7

Hashing
Recall: 5-tuple Hashing

Problem

• Data-plane devices forward packets

• Packets usually belong to a flow (think: TCP session)

• There may be multiple next hops for the destination of a packet

• If different next hops are used within one flow, packets may be reordered

• Reordering messes with TCP Congestion-Control

Solution

• Compute so called 5-tuple hash of the following fields:

1. Source IP address
2. Destination IP address
3. Source port
4. Destination port
5. Type of L4-protocol

• Hash is the same for all packets within one flow

• Choose next hop by means of the hash

• Result: All packets of one flow use the same path from source to destination

Content Delivery Networks (CDN) — Introduction 8

Hashing
Modulo hashing

Problem setting

• Need to map one client to one of N servers

Naive solution (also called modulo hashing)

• Let h be the 5-tuple hash

• Redirect the client to server: h mod N

Problem

• What happens if N changes?

• Every client is hashed to a new location

Content Delivery Networks (CDN) — Introduction 9

Hashing
Modulo hashing

Problem setting

• Need to map one client to one of N servers

Naive solution (also called modulo hashing)

• Let h be the 5-tuple hash

• Redirect the client to server: h mod N

Problem

• What happens if N changes?

• Every client is hashed to a new location

Content Delivery Networks (CDN) — Introduction 9

Hashing
Consistent Hashing

Principle of Consistent Hashing [7]

• Map each client to a point on the edge of a circle (e.g. [0 ... 15])

• Clients walk around the circle in order to find which server to
use

What happens if the number of servers N changes?

• Points are removed or added on the circle

• Clients are remapped according to the available positions on
the circle

Advantage

• Only K
N keys need to be remapped on average with K the num-

ber of clients

Improvement

• Map servers not to a single but multiple positions in the circle
→ more even distribution of clients to server mapping

S0

S1

S2

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Client A
Client B

Client C

Content Delivery Networks (CDN) — Introduction 10

Hashing
Consistent Hashing

Principle of Consistent Hashing [7]

• Map each client to a point on the edge of a circle (e.g. [0 ... 15])

• Clients walk around the circle in order to find which server to
use

What happens if the number of servers N changes?

• Points are removed or added on the circle

• Clients are remapped according to the available positions on
the circle

Advantage

• Only K
N keys need to be remapped on average with K the num-

ber of clients

Improvement

• Map servers not to a single but multiple positions in the circle
→ more even distribution of clients to server mapping

S0

S1

S2

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15Client A
Client B

Client C

Content Delivery Networks (CDN) — Introduction 10

Hashing
Consistent Hashing

Principle of Consistent Hashing [7]

• Map each client to a point on the edge of a circle (e.g. [0 ... 15])

• Clients walk around the circle in order to find which server to
use

What happens if the number of servers N changes?

• Points are removed or added on the circle

• Clients are remapped according to the available positions on
the circle

Advantage

• Only K
N keys need to be remapped on average with K the num-

ber of clients

Improvement

• Map servers not to a single but multiple positions in the circle
→ more even distribution of clients to server mapping

S0

S1

S2

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15Client A
Client B

Client C

Content Delivery Networks (CDN) — Introduction 10

Hashing
Consistent Hashing

Principle of Consistent Hashing [7]

• Map each client to a point on the edge of a circle (e.g. [0 ... 15])

• Clients walk around the circle in order to find which server to
use

What happens if the number of servers N changes?

• Points are removed or added on the circle

• Clients are remapped according to the available positions on
the circle

Advantage

• Only K
N keys need to be remapped on average with K the num-

ber of clients

Improvement

• Map servers not to a single but multiple positions in the circle
→ more even distribution of clients to server mapping

S0

S1

S2

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15Client A
Client B

Client C

Content Delivery Networks (CDN) — Introduction 10

Hashing
Consistent Hashing

Principle of Consistent Hashing [7]

• Map each client to a point on the edge of a circle (e.g. [0 ... 15])

• Clients walk around the circle in order to find which server to
use

What happens if the number of servers N changes?

• Points are removed or added on the circle

• Clients are remapped according to the available positions on
the circle

Advantage

• Only K
N keys need to be remapped on average with K the num-

ber of clients

Improvement

• Map servers not to a single but multiple positions in the circle
→ more even distribution of clients to server mapping

S0

S1

S2

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15Client A
Client B

Client C

S3

Content Delivery Networks (CDN) — Introduction 10

Hashing
Consistent Hashing

Principle of Consistent Hashing [7]

• Map each client to a point on the edge of a circle (e.g. [0 ... 15])

• Clients walk around the circle in order to find which server to
use

What happens if the number of servers N changes?

• Points are removed or added on the circle

• Clients are remapped according to the available positions on
the circle

Advantage

• Only K
N keys need to be remapped on average with K the num-

ber of clients

Improvement

• Map servers not to a single but multiple positions in the circle
→ more even distribution of clients to server mapping

S0

S1

S2

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15Client A
Client B

Client C

S3

Content Delivery Networks (CDN) — Introduction 10

Content Delivery Networks (CDN)

Introduction

TCP/HTTP-based Load Balancing

DNS-based Load Balancing

Anycast-based Load Balancing

CDN in practice

Bibliography

Content Delivery Networks (CDN) 11

TCP/HTTP-based Load Balancing
TCP Load Balancers

Idea

• Most high-volume traffic is transferred over TCP

• Have one front-end server and multiple back-end servers

• Back end servers may perform heavy tasks (e.g., PHP scripts, database accesses)

• Front end servers only forward packets to the back end

• Sessions are equally distributed between back-end servers

Internet

Client 1

Client 2

Load Balancer

Content Server 1

Content Server 2

Content Delivery Networks (CDN) — TCP/HTTP-based Load Balancing 12

TCP/HTTP-based Load Balancing
HTTP Load Balancers
Problem

• Most user-facing content (e.g., Netflix) is sent via HTTP(S)
• “Stupid” TCP load balancers are rather inefficient - need for central front end, which is under load
• Way better: Direct the user to one server out of a pool

Solution

• Have one redirection server (front end)
• Front end knows a pool of content servers
• Front end always answers with a “302 Temporarily Moved”
• Browser will automatically connect to the content server mentioned in the “moved” message

Internet

Client 1

Client 2

Load Balancer

Content Server 1

Content Server 2

/1 2

3

/1 2

3

Content Delivery Networks (CDN) — TCP/HTTP-based Load Balancing 13

TCP/HTTP-based Load Balancing
Redirection example

Munich ~$ nc google.com 80

GET /

HTTP/1.0 302 Found

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Referrer-Policy: no-referrer

Location: http://www.google.de/?gfe_rd=cr&ei=0JltWZ_4C4SV8QeC0qCoCQ

Content-Length: 258

Date: Tue, 18 Jul 2017 05:17:04 GMT

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">

<TITLE>302 Moved</TITLE></HEAD><BODY>

<H1>302 Moved</H1>

The document has moved

here.

</BODY></HTML>

Munich ~$ dig +short google.com

172.217.22.238

Munich ~$ dig +short www.google.de

172.217.22.99
Content Delivery Networks (CDN) — TCP/HTTP-based Load Balancing 14

TCP/HTTP-based Load Balancing
HTTPS Deployment

Figure 1: Percentage of HTTPS requests in Chrome1 Figure 2: Percentage of HTTPS requests in Firefox2

Figure 3: Active Let’s Encrypt certificates and FQDNs3
Figure 4: Certificates issued by Let’s Encrypt per day4

1
https://transparencyreport.google.com/https

2
https://letsencrypt.org/stats/

3
https://transparencyreport.google.com/https

4
https://letsencrypt.org/stats/

Content Delivery Networks (CDN) — TCP/HTTP-based Load Balancing 15

https://transparencyreport.google.com/https
https://letsencrypt.org/stats/
https://transparencyreport.google.com/https
https://letsencrypt.org/stats/

TCP/HTTP-based Load Balancing
HTTPS Problem
Recall: Layering of TLS:

Link Layer

Network Layer

Transport Layer

Transport Layer Security (TLS)

HTTP / SMTP / IMAP / ...

Why is encryption potentially problematic?

• Front end may want to select a server based on URL, cookies, . . .
• NGINX supports selecting a consistent content server based on a special cookie

• Traffic contains confidential content (e.g., passwords, cookies, . . .)
• Front end server needs to have the TLS-Certificate
• What happens after the connection is decrypted?

Content Delivery Networks (CDN) — TCP/HTTP-based Load Balancing 16

TCP/HTTP-based Load Balancing
HTTPS Problem

Encryption is great, but inconvenient

• USE ENCRYPTION :)

• CDN deployments may be very large - multiple racks or rooms

• Where should you decrypt user traffic?

Options

• Use an SSL/TLS front-end - special high-performance hardware
• Snooping inside the network yields clear text
• Very cost efficient
• One central configuration

• Perform decryption/encryption on the content server
• May burn a lot of CPU cycles
• Decryption as late as possible
• Easily deployed out-of-the-box

Content Delivery Networks (CDN) — TCP/HTTP-based Load Balancing 17

TCP/HTTP-based Load Balancing
HTTPS Problem 5

5B. Gellman and A. Soltani, “Nsa infiltrates links to yahoo, google data centers worldwide, snowden documents say,” Wahington Post: https://www.washingtonpost.
com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-
8b74-d89d714ca4dd_story.html, 2013

Content Delivery Networks (CDN) — TCP/HTTP-based Load Balancing 18

https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html

Content Delivery Networks (CDN)

Introduction

TCP/HTTP-based Load Balancing

DNS-based Load Balancing

Anycast-based Load Balancing

CDN in practice

Bibliography

Content Delivery Networks (CDN) 19

DNS-based Load Balancing
Recall: DNS [9]

What is DNS?

• Most distributed database on this planet

• “Domain Name System”

• Resolves domain names (acn.net.in.tum.de) into IP addresses

• Quite flexible

• Nameserver: Has an up-to-date copy of the zone file (knows mapping: name IP)

• Resolver: Queries nameservers on behalf of the client

Content Delivery Networks (CDN) — DNS-based Load Balancing 20

http://acn.net.in.tum.de

DNS-based Load Balancing
DNS based CDNs

Idea

• TCP/HTTP Load balancers still need some kind of traffic waste / useless RTT

• Why not directly connect to the correct content server?

• Servers are usually found via DNS

• Therefore DNS is the obvious choice

Two different possibilities

• Lots of entries

• Geo-based

Content Delivery Networks (CDN) — DNS-based Load Balancing 21

DNS-based Load Balancing
Many DNS entries (Naive approach)

Idea

• DNS may return multiple A/AAAA entries

• Client chooses one randomly

• In average, each server should get equal amount traffic

• Client/DNS does the load balancing

Example

Munich ~$ dig +short netflix.com

52.50.245.135

54.171.208.83

54.171.226.127

52.51.95.138

52.50.133.131

52.48.44.196

52.49.219.75

52.48.236.77

Content Delivery Networks (CDN) — DNS-based Load Balancing 22

DNS-based Load Balancing
Geo-DNS

Existing Problems

• Naive DNS load balancing may lead to endpoints far away

Solution

• Nameserver has IP address of resolver

• Resolver may give the /24 prefix of the client

• Clients often use ISP resolvers (often same city as clients)

• Nameserver knows the rough geographical location of the resolver/client

• Provide the resolver/client with the nearest content server

• May still be mislead (use resolver in another country, which doesn’t give the /24 prefix ...)

Example: youtube.com 6

City IPv4 address IPv6 address
Germany, Falkenstein 216.58.213.206 2a00:1450:4005:803::200e
USA, North Carolina 74.125.138.190, ... 2a00:1450:4011:805::1001
USA, New Jersey 172.217.3.110 2607:f8b0:4006:818::200e
United Kingdom, London 74.125.206.190, ... 2a00:1450:400c:c04::5b

6
Data obtained via https://check- host.net/check- dns?host=youtube.com

Content Delivery Networks (CDN) — DNS-based Load Balancing 23

https://check-host.net/check-dns?host=youtube.com

DNS-based Load Balancing
Geo-DNS Example

World image created by NASA, https://visibleearth.nasa.gov/view.php?id=73909

Nameserver Content Server User Ship
Satellite internet via China

DNS

HTTP(S)

Content Delivery Networks (CDN) — DNS-based Load Balancing 24

DNS-based Load Balancing
Combination of both

Lots of different entries for different locations

Munich ~$ dig +short netflix.com

52.208.128.101

52.18.15.9

52.19.40.147

52.209.210.113

52.17.219.77

52.208.135.54

52.19.20.249

52.208.236.195

Frankfurt ~$ dig +short netflix.com

54.76.83.27

54.77.81.254

54.77.186.213

54.77.210.48

176.34.151.201

52.17.227.174

54.76.226.73

54.72.216.241

Content Delivery Networks (CDN) — DNS-based Load Balancing 25

DNS-based Load Balancing
DDoS Protection HTTPS Problems
DDoS Protection scheme

• Set DNS up to point to the protection provider’s CDN (e.g. Cloudflare)

• All traffic passes through the CDN

• CDN caches static content (e.g., videos)

• Forwards dynamic content requests (e.g., PHP-websites) to the “real” webserver

Problem

• CDN needs to terminate the TLS connection

• CDN has complete access to the connection, including secret cookies, passwords, . . .

How is the connection between the CDN and the real webserver protected?

• Maybe not at all

• Maybe by TLS

• Maybe by TLS without certificate validation

• Maybe by IPsec

Content Delivery Networks (CDN) — DNS-based Load Balancing 26

Content Delivery Networks (CDN)

Introduction

TCP/HTTP-based Load Balancing

DNS-based Load Balancing

Anycast-based Load Balancing

CDN in practice

Bibliography

Content Delivery Networks (CDN) 27

Anycast-based Load Balancing
Anycast

Problems with DNS

• Still may be misleading

• DNS was never intended to work that way

Solution

• Packets are routed through BGP

• Manipulating routes via BGP

• Assign lots of content servers the same IP

• Announce the IP prefix through lots of different sites / peerings

Result

• BGP takes care of finding the best available content server

• BGP routers may have multiple routes to the same prefix

• If router doesn’t use 5-tuple hashing, the same flow might reach two different content servers

• Good thing: Everybody uses 5-tuple hashing :)

• No problem at all for UDP Used for DNS

Content Delivery Networks (CDN) — Anycast-based Load Balancing 28

Content Delivery Networks (CDN)

Introduction

TCP/HTTP-based Load Balancing

DNS-based Load Balancing

Anycast-based Load Balancing

CDN in practice

Bibliography

Content Delivery Networks (CDN) 29

CDN in practice
Design of a cache

Goal

• Decrease latency of requests from clients

• Increase the hit-cache ratio

Architecture design

• Which objects need to be cached?

• Where to cache?

• Size of the cache?

• Caching strategy?

• How to update the cache?

Metrics

• Cache-hit / cache-miss

Archive

Europe Asia America

.Consumers

Edge caches

Regional
caches

Full content
archive

Low
erdistance

to
custom

er

Content Delivery Networks (CDN) — CDN in practice 30

CDN in practice
What to cache?

On a typical CDN server cluster serving web traffic over two days, 74% of the roughly 400 million objects in cache were accessed only once
and 90% were accessed less than four times.

0"

20"

40"

60"

80"

100"

1" 4" 16" 64" 256" 1024"

Pe
rc
en

t'o
f'o

bj
ec
ts
'

Number'of'accesses'

Figure 5: On a typical CDN server cluster serving
web tra�c over two days, 74% of the roughly 400
million objects in cache were accessed only once and
90% were accessed less than four times.

ject in its disk cache. When the disk cache fills up, the
objects are evicted using a cache replacement policy. But
there is no reason to cache objects that are likely to be ac-
cessed only once and never accessed again. Such objects are
jocularly referred to as “one-hit-wonders”. Our popular-
ity analysis suggests that over three-quarters of the objects
are one-hit wonders and a significant amount of disk space
would be saved if they were not cached. In addition, the
number writes to disk would also be reduced significantly if
these objects were not cached.

Cache-on-second-hit rule. A simple cache filtering rule
that avoids caching one-hit-wonders is to cache an object
only when it is accessed for a second time within a specific
time period. The rule can be implemented by storing the set
of objects that have been accessed in a Bloom filter. When
an object is requested by an client, the server first checks to
see if the object has been accessed before by examining the
Bloom filter. If not, the object is fetched and served to the
client, but it is not cached. If the object has been accessed
before, it is fetched, served, and also stored in the server’s
disk cache.

The astute reader may have observed that as more ob-
jects are added to a Bloom filter and it starts to fill up, the
probability of false positives increases. A simple approach to
circumventing this issue is to have two Bloom filters, a pri-
mary and a secondary. All new objects are inserted into the
primary filter, until it is reaches a threshold for maximum
number of objects. At that point, the primary becomes the
secondary filter and a new filter with all entries initialized
to zero becomes the primary. As the old secondary filter is
discarded, objects that have not been accessed recently are
forgotten. When checking if an object has been accessed in
the recent past, both primary and secondary Bloom filters
need to be queried.

4.3 Empirical Benefits
To illustrate the benefits of the cache-on-second-hit rule

using Bloom filters, we describe a simple experiment con-
ducted by Ming Dong Feng using a cluster of about 47 pro-
duction servers serving live tra�c on the field. Each server
has eight hard disks. The workload served by these servers
have a “cold footprint” consisting of web and videos from

social networking sites. Bloom filters that implement the
cache-on-second-hit rule were turned on on March 14th and
turned o↵ on April 24th to create before, during, and after
scenarios for analysis. Measurements were made every few
tens of seconds and averaged across all machines every six
hours. Thus, our figures show multiple measurements per
day, enabling us to see both intra- and inter-day variations.

Figure 6 shows the average byte hit rate of the servers,
where byte hit rate is simply the percent of bytes served to
clients that were found in the server cache. For instance, a
byte hit rate of 75% would mean that for every 100 bytes
served to the client, 75 bytes were found in cache and 25
bytes had to be fetched from a peer, parent, or origin server.
Note that during the period when Bloom filtering was turned

70.00$
72.00$
74.00$
76.00$
78.00$
80.00$
82.00$
84.00$
86.00$
88.00$
90.00$

17+Feb$ 27+Feb$ 9+Mar$ 19+Mar$ 29+Mar$ 8+Apr$ 18+Apr$ 28+Apr$ 8+May$ 18+May$ 28+May$

By
te
%H
it%
Ra

te
%(%

)%

Date%

Figure 6: Byte hit rates increased when cache filter-
ing was turned on between March 14th and April
24th because not caching objects that are accessed
only once leaves more disk space to store more pop-
ular objects.

on, the byte hit rate increases from around 74% to 83%.
Most CDNs implement cache replacement algorithms such
as LRU, which evict less popular objects such as one-hit-
wonders when the cache is full. Filtering out the less pop-
ular objects and not placing them in cache at all provides
additional disk space for more popular objects and increases
the byte hit rate.

In Figure 7, we show the impact of Bloom filters on the
number of disk writes performed by the servers. The disk
related metrics we report are measured by a utility similar
to Linux’s iostat [1] which runs continually on production
servers and reports metrics relevant to disk performance.
Not having to store the one-hit-wonders in cache reduces
the aggregate rate of disk writes by nearly one-half. To be
more precise, the rate of disk writes drops from an average of
10209 writes per second to 5738 writes per second, a decrease
of 44%. One consequence of fewer disk writes is that the

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

17)Feb" 27)Feb" 9)Mar" 19)Mar" 29)Mar" 8)Apr" 18)Apr" 28)Apr" 8)May" 18)May" 28)May"

Di
sk
%w
rit
es
%p
er
%se

co
nd

%

Date%

Figure 7: Turning on cache filtering decreases the
rate of disk writes by nearly one half because objects
accessed only once are not written to disk.

latency of accessing an object from disk decreases. As shown
in Figure 8, the average disk latency drops from an average

Figure 5: Access per file (source: [10])

Content Delivery Networks (CDN) — CDN in practice 31

CDN in practice
Cache filtering

Problem

• Many objects are only accessed once

• Uses disk space without benefits

• More accessed objects could be evicted from cache (LRU)

Solution

• Use cache filtering

• Bloom filter (space efficient)

• Use filter to decide which objects to cache

• Example policy: only cache objects already seen once

Content Delivery Networks (CDN) — CDN in practice 32

CDN in practice
Bloom Filter as Cache Filter

0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0

{x , y , z}

wBloom Filter

• Stochastic data structure

• Map object hashes into table with binary entries

• Use multiple hash functions to decrease false positives

Challenges

• Speed: Use single hash and partition it into multiple hashes

• Size: Balance between false positives, number of hash functions, number of stored objects
• Example: 100 million objects, 0.1% false positives, 10 hash functions → 175 MB

• Complexity: Take other metrics into consideration

Content Delivery Networks (CDN) — CDN in practice 33

CDN in practice
Impact on performance
Byte hit rates increased when cache filtering was turned on between March 14th and April 24th because not caching objects that are accessed
only once leaves more disk space to store more popular objects

0"

20"

40"

60"

80"

100"

1" 4" 16" 64" 256" 1024"

Pe
rc
en

t'o
f'o

bj
ec
ts
'

Number'of'accesses'

Figure 5: On a typical CDN server cluster serving
web tra�c over two days, 74% of the roughly 400
million objects in cache were accessed only once and
90% were accessed less than four times.

ject in its disk cache. When the disk cache fills up, the
objects are evicted using a cache replacement policy. But
there is no reason to cache objects that are likely to be ac-
cessed only once and never accessed again. Such objects are
jocularly referred to as “one-hit-wonders”. Our popular-
ity analysis suggests that over three-quarters of the objects
are one-hit wonders and a significant amount of disk space
would be saved if they were not cached. In addition, the
number writes to disk would also be reduced significantly if
these objects were not cached.

Cache-on-second-hit rule. A simple cache filtering rule
that avoids caching one-hit-wonders is to cache an object
only when it is accessed for a second time within a specific
time period. The rule can be implemented by storing the set
of objects that have been accessed in a Bloom filter. When
an object is requested by an client, the server first checks to
see if the object has been accessed before by examining the
Bloom filter. If not, the object is fetched and served to the
client, but it is not cached. If the object has been accessed
before, it is fetched, served, and also stored in the server’s
disk cache.

The astute reader may have observed that as more ob-
jects are added to a Bloom filter and it starts to fill up, the
probability of false positives increases. A simple approach to
circumventing this issue is to have two Bloom filters, a pri-
mary and a secondary. All new objects are inserted into the
primary filter, until it is reaches a threshold for maximum
number of objects. At that point, the primary becomes the
secondary filter and a new filter with all entries initialized
to zero becomes the primary. As the old secondary filter is
discarded, objects that have not been accessed recently are
forgotten. When checking if an object has been accessed in
the recent past, both primary and secondary Bloom filters
need to be queried.

4.3 Empirical Benefits
To illustrate the benefits of the cache-on-second-hit rule

using Bloom filters, we describe a simple experiment con-
ducted by Ming Dong Feng using a cluster of about 47 pro-
duction servers serving live tra�c on the field. Each server
has eight hard disks. The workload served by these servers
have a “cold footprint” consisting of web and videos from

social networking sites. Bloom filters that implement the
cache-on-second-hit rule were turned on on March 14th and
turned o↵ on April 24th to create before, during, and after
scenarios for analysis. Measurements were made every few
tens of seconds and averaged across all machines every six
hours. Thus, our figures show multiple measurements per
day, enabling us to see both intra- and inter-day variations.

Figure 6 shows the average byte hit rate of the servers,
where byte hit rate is simply the percent of bytes served to
clients that were found in the server cache. For instance, a
byte hit rate of 75% would mean that for every 100 bytes
served to the client, 75 bytes were found in cache and 25
bytes had to be fetched from a peer, parent, or origin server.
Note that during the period when Bloom filtering was turned

70.00$
72.00$
74.00$
76.00$
78.00$
80.00$
82.00$
84.00$
86.00$
88.00$
90.00$

17+Feb$ 27+Feb$ 9+Mar$ 19+Mar$ 29+Mar$ 8+Apr$ 18+Apr$ 28+Apr$ 8+May$ 18+May$ 28+May$

By
te
%H
it%
Ra

te
%(%

)%

Date%

Figure 6: Byte hit rates increased when cache filter-
ing was turned on between March 14th and April
24th because not caching objects that are accessed
only once leaves more disk space to store more pop-
ular objects.

on, the byte hit rate increases from around 74% to 83%.
Most CDNs implement cache replacement algorithms such
as LRU, which evict less popular objects such as one-hit-
wonders when the cache is full. Filtering out the less pop-
ular objects and not placing them in cache at all provides
additional disk space for more popular objects and increases
the byte hit rate.

In Figure 7, we show the impact of Bloom filters on the
number of disk writes performed by the servers. The disk
related metrics we report are measured by a utility similar
to Linux’s iostat [1] which runs continually on production
servers and reports metrics relevant to disk performance.
Not having to store the one-hit-wonders in cache reduces
the aggregate rate of disk writes by nearly one-half. To be
more precise, the rate of disk writes drops from an average of
10209 writes per second to 5738 writes per second, a decrease
of 44%. One consequence of fewer disk writes is that the

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

17)Feb" 27)Feb" 9)Mar" 19)Mar" 29)Mar" 8)Apr" 18)Apr" 28)Apr" 8)May" 18)May" 28)May"

Di
sk
%w
rit
es
%p
er
%se

co
nd

%

Date%

Figure 7: Turning on cache filtering decreases the
rate of disk writes by nearly one half because objects
accessed only once are not written to disk.

latency of accessing an object from disk decreases. As shown
in Figure 8, the average disk latency drops from an average

Figure 6: Byte hit rates (source: [10])
Content Delivery Networks (CDN) — CDN in practice 34

CDN in practice
Impact on performance

Turning on cache filtering decreases the rate of disk writes by nearly one half because objects accessed only once are not written to disk.

0"

20"

40"

60"

80"

100"

1" 4" 16" 64" 256" 1024"

Pe
rc
en

t'o
f'o

bj
ec
ts
'

Number'of'accesses'

Figure 5: On a typical CDN server cluster serving
web tra�c over two days, 74% of the roughly 400
million objects in cache were accessed only once and
90% were accessed less than four times.

ject in its disk cache. When the disk cache fills up, the
objects are evicted using a cache replacement policy. But
there is no reason to cache objects that are likely to be ac-
cessed only once and never accessed again. Such objects are
jocularly referred to as “one-hit-wonders”. Our popular-
ity analysis suggests that over three-quarters of the objects
are one-hit wonders and a significant amount of disk space
would be saved if they were not cached. In addition, the
number writes to disk would also be reduced significantly if
these objects were not cached.

Cache-on-second-hit rule. A simple cache filtering rule
that avoids caching one-hit-wonders is to cache an object
only when it is accessed for a second time within a specific
time period. The rule can be implemented by storing the set
of objects that have been accessed in a Bloom filter. When
an object is requested by an client, the server first checks to
see if the object has been accessed before by examining the
Bloom filter. If not, the object is fetched and served to the
client, but it is not cached. If the object has been accessed
before, it is fetched, served, and also stored in the server’s
disk cache.

The astute reader may have observed that as more ob-
jects are added to a Bloom filter and it starts to fill up, the
probability of false positives increases. A simple approach to
circumventing this issue is to have two Bloom filters, a pri-
mary and a secondary. All new objects are inserted into the
primary filter, until it is reaches a threshold for maximum
number of objects. At that point, the primary becomes the
secondary filter and a new filter with all entries initialized
to zero becomes the primary. As the old secondary filter is
discarded, objects that have not been accessed recently are
forgotten. When checking if an object has been accessed in
the recent past, both primary and secondary Bloom filters
need to be queried.

4.3 Empirical Benefits
To illustrate the benefits of the cache-on-second-hit rule

using Bloom filters, we describe a simple experiment con-
ducted by Ming Dong Feng using a cluster of about 47 pro-
duction servers serving live tra�c on the field. Each server
has eight hard disks. The workload served by these servers
have a “cold footprint” consisting of web and videos from

social networking sites. Bloom filters that implement the
cache-on-second-hit rule were turned on on March 14th and
turned o↵ on April 24th to create before, during, and after
scenarios for analysis. Measurements were made every few
tens of seconds and averaged across all machines every six
hours. Thus, our figures show multiple measurements per
day, enabling us to see both intra- and inter-day variations.

Figure 6 shows the average byte hit rate of the servers,
where byte hit rate is simply the percent of bytes served to
clients that were found in the server cache. For instance, a
byte hit rate of 75% would mean that for every 100 bytes
served to the client, 75 bytes were found in cache and 25
bytes had to be fetched from a peer, parent, or origin server.
Note that during the period when Bloom filtering was turned

70.00$
72.00$
74.00$
76.00$
78.00$
80.00$
82.00$
84.00$
86.00$
88.00$
90.00$

17+Feb$ 27+Feb$ 9+Mar$ 19+Mar$ 29+Mar$ 8+Apr$ 18+Apr$ 28+Apr$ 8+May$ 18+May$ 28+May$

By
te
%H
it%
Ra

te
%(%

)%

Date%

Figure 6: Byte hit rates increased when cache filter-
ing was turned on between March 14th and April
24th because not caching objects that are accessed
only once leaves more disk space to store more pop-
ular objects.

on, the byte hit rate increases from around 74% to 83%.
Most CDNs implement cache replacement algorithms such
as LRU, which evict less popular objects such as one-hit-
wonders when the cache is full. Filtering out the less pop-
ular objects and not placing them in cache at all provides
additional disk space for more popular objects and increases
the byte hit rate.

In Figure 7, we show the impact of Bloom filters on the
number of disk writes performed by the servers. The disk
related metrics we report are measured by a utility similar
to Linux’s iostat [1] which runs continually on production
servers and reports metrics relevant to disk performance.
Not having to store the one-hit-wonders in cache reduces
the aggregate rate of disk writes by nearly one-half. To be
more precise, the rate of disk writes drops from an average of
10209 writes per second to 5738 writes per second, a decrease
of 44%. One consequence of fewer disk writes is that the

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

17)Feb" 27)Feb" 9)Mar" 19)Mar" 29)Mar" 8)Apr" 18)Apr" 28)Apr" 8)May" 18)May" 28)May"

Di
sk
%w
rit
es
%p
er
%se

co
nd

%

Date%

Figure 7: Turning on cache filtering decreases the
rate of disk writes by nearly one half because objects
accessed only once are not written to disk.

latency of accessing an object from disk decreases. As shown
in Figure 8, the average disk latency drops from an average

Figure 7: Disk writes (source: [10])

Content Delivery Networks (CDN) — CDN in practice 35

Content Delivery Networks (CDN)

Introduction

TCP/HTTP-based Load Balancing

DNS-based Load Balancing

Anycast-based Load Balancing

CDN in practice

Bibliography

Content Delivery Networks (CDN) 36

Content Delivery Networks (CDN)

[1] Sandvine, Global Internet Phenomena Report, fall 2011, 2011.

[2] Sandvine, Global Internet Phenomena Report, fall 2012, 2012.

[3] Sandvine, Global Internet Phenomena Report, fall 2013, 2013.

[4] Sandvine, Global Internet Phenomena Report, fall 2014, 2014.

[5] Sandvine, Global Internet Phenomena Report, latin america & north america, 2015.

[6] Sandvine, Global Internet Phenomena Report, latin america & north america, 2016.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web,” in Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, ser. STOC ’97, ACM, 1997, pp. 654–663. DOI: 10.1145/258533.258660.

[8] B. Gellman and A. Soltani, “Nsa infiltrates links to yahoo, google data centers worldwide, snowden documents say,” Wahington Post:
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-

worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html, 2013.

[9] P. Moackapetris, Domain Names – Implementation and Specification, https://tools.ietf.org/html/rfc1035, 1987.

[10] B. M. Maggs and R. K. Sitaraman, “Algorithmic Nuggets in Content Delivery,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 3,
pp. 52–66, Jul. 2015, ISSN: 0146-4833. DOI: 10.1145/2805789.2805800.

Content Delivery Networks (CDN) 37

https://doi.org/10.1145/258533.258660
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://doi.org/10.1145/2805789.2805800

	Content Delivery Networks (CDN)
	Introduction
	Caching
	Hashing

	TCP/HTTP-based Load Balancing
	DNS-based Load Balancing
	Anycast-based Load Balancing
	CDN in practice
	Bibliography

